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Abstract

MTfit is a Bayesian forward model inversion code for moment tensor and double-couple source inversion using
different data types, based on the Bayesian approach presented in Pugh et al, 2016a and Pugh, 2015. The code has
been developed as part of a PhD project (Pugh, 2015). The solutions are estimated using polarity and amplitude
ratio data, although the code is extensible (see Extending MTfit) so it is possible to include other data-types in
this framework. MTfit can incorporate uncertainty estimates both in the data (noise etc.) and the model (and
location) in the resultant posterior probability density function. There are three sampling approaches that have
been developed, with different advantages (Pugh et al, 2015t), and it is also possible to use the approach for
relative amplitude inversion as well (Pugh et al, 2015t).

MTfit also works with the automated Bayesian polarity approach described in Pugh et al, 2016b as an alternative
method of estimating polarity probabilities. This may be available on request as the autopol Python module.
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CHAPTER 1

Introduction

Source inversion is carried out at many seismological observatories and research groups around the world. MTfit
builds on the approach introduced in Pugh, 2015, using a Bayesian approach to source inversion for polarity and
amplitude ratios, as well as automated Bayesian polarity probability estimates. This approach differs from com-
monly used existing approaches, such as FPFIT (Reasenberg and Oppenheimer 1985), HASH (Hardebeck and
Shearer 2002, 2003) and FOCMEC (Snoke 2003), because it uses polarities and amplitude ratios in a Bayesian
framework to estimate the full source PDF for the double-couple and full moment tensor model spaces. The
approach can include location and velocity model uncertainty, as well as marginalising over measurement uncer-
tainties in the data

Pugh et al. (2015) introduced a Bayesian approach to source inversion for polarity and amplitude ratios, as well
as automated Bayesian polarity probability estimates (Pugh et al., 2015). These approaches have been developed
into MTfit, a Python module for source inversion. Python is a common programming and scripting language
with many scientific modules available, both for mathematical calculation such as NumPy1 and SciPy2, and for
seismological methods such as ObsPy3 (Beyreuther et al. 2010).

Python and many of its modules are open source, allowing easy development and removing licensing restrictions.
Moreover, Python is platform independent, intuitive and accessible, with a good shell interface in the form of
iPython4. It is used in many fields and is easy to install on almost any computer platform. Python can also
interface easily with C and fortran libraries, as well as calling functions from compiled C modules, such as those
generated with Cython5, with no difference from normal Python functions. MTfit has been written in Python
2.7, and may not be compatible with Python 3.

MTfit has been used in several studies, including those reported by Wilks et al. 2015, Greenfield and White 2015,
Mildon et al. 2015, and Pugh et al. 2015.

The polarity probability estimates can be calculated using the approach described in:ref:Pugh, 2016a <Pugh-
2016a>.

This manual describes how to install and run MTfit in chapters 2 and 3. Chapters 4 and 5 provide an introduction
to using MTfitwith different algorithms and parameter choices. All the data and scripts to run these examples can
be found in the MTfit/examples directory. The basic theory underlying MTfit is introduced in chapters 6 and
7, and Pugh et al. (2016a) provides a full derivation and explanation of the theory. The different search algorithms
are described in chapter 8. These are investigated in more detail in Pugh et al. (2015t). The moment tensor conver-
sion submodule, MTconvert is introduced in chapter 9. Chapter 10 presents the different command line options

1 http://www.numpy.org
2 http://www.scipy.org
3 http://www.obspy.org
4 https://ipython.org/
5 http://www.cython.org
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for MTfit. Chapter 11 describes the different plotting options uisng the MTfit.plot submodule. Chapter 12
presents the different command line options for MTplot script. The MTfit.inversion.Inversion class,
used for carrying out the forward model is documented in chapter 13. Lastly the different ways MTfit can be
extended are shown in chapter 14.

2 Chapter 1. Introduction



CHAPTER 2

Installing MTfit

MTfit is available from PyPI and can be installed using

$ pip install MTfit

MTfit is available in several formats, including as a tar.gz file, a zip file, and as ‘‘wheels‘. Additionally the
git repository can be cloned.

Apart from the wheels, all the other formats require installing from the source (after unpacking the compressed
files e.g. tar.gz).

MTfit can be installed from the source by calling:

$ python setup.py install

To see additional command line options for the setup.py file use:

$ python setup.py --help

or:

$ python setup.py --help-commands

2.1 Requirements

MTfit requires three modules

• NumPy6

• SciPy7

• pyqsub8 - a simple module to provide interfacing with qsub, and will be automatically installed.

• matplotlib9

6 http://www.numpy.org
7 http://www.scipy.org
8 https://www.github.com/djpugh/pyqsub
9 http://matplotlib.org/
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2.1.1 Optional requirements

Additionally there are several optional requirements which allow additional features in MTfit.

HDF5 (Matlab -v7.3)

To use the HDF5 MATLAB format (format -v7.3) or disk-based storage of the in progress sampling (slower but
saves on memory requirements) requires:

• h5py10

• hdf5storage11

If installing from source these modules require:

• HDF512 1.8.4 or newer, shared library version with development headers (libhdf5-dev or similar)

• Python 2.6 - 3.3 with development headers (python-dev or similar)

• NumPy 1.6 or newer

• Optionally: Cython13, if you want to access features introduced after HDF5 1.8.4, or Parallel HDF5.

Warning: HDF5 support is required if the output files are large (>2GB) and MATLAB output is used,
beacause MATLAB cannot read older format files bigger than this.

MPI

To run on multiple nodes on a cluster requires mpi4py installed and a distribution of MPI14 such as OpenMPI15

to run in parallel on multiple nodes (single node multi-processor uses multiprocessing16)

• mpi4py17

NonLinLoc Location Uncertainty

NonLinLoc18 scatter files can be used for the location PDF. This requires:

• Scat2Angle from pyNLLoc19.

Building the Documentation

To build this documentation from source requires:

• sphinx20 1.3.1 or newer

It can be built in the source directory:

$ python setup.py build-docs

10 http://www.h5py.org/
11 http://pythonhosted.org/hdf5storage/
12 http://www.hdfgroup.org/HDF5/
13 http://cython.org/
14 http://www.mcs.anl.gov/research/projects/mpi/
15 http://www.open-mpi.org/
16 https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
17 http://mpi4py.scipy.org/
18 http://alomax.free.fr/nlloc
19 https://www.github.com/djpugh/pyNLLoc
20 http://sphinx-doc.org
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and after installation:

>>MTfit.build_docs()

2.2 Running the Test Suite

MTfit comes with a complete test suite which can be run in the source directory:

$ python setup.py build
$ python setup.py test

and after installation from the python interpreter:

>>> import MTfit
>>> MTfit.run_tests()

2.2. Running the Test Suite 5
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CHAPTER 3

Running MTfit

There are several ways to run MTfit, and these are described here.

3.1 Command Line

MTfit can be run from the command line. A script should have been installed onto the path during installation
and should be callable as:

$ MTfit

However it may be necessary to install the script manually. This is platform dependent.

3.1.1 Script Installation

Linux

Add this python script to a directory in the $PATH environmental variable:

#!/usr/bin/env python
import MTfit
MTfit.__run__()

And make sure it is executable.

Windows

Add the linux script (above) to the path or if using powershell edit the powershell profile (usually found in Doc-
uments/WindowsPowerShell/ - if not present use $PROFILE|Format-List -Force to locate it, it may be
necessary to create the profile) and add:

function MTfit{
$script={

python -c "import MTfit;MTfit.__run__()" $args
}

(continues on next page)
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(continued from previous page)

Invoke-Command -ScriptBlock $script -ArgumentList $args
}

Windows Powershell does seem to have some errors with commandline arguments, if necessary these should be
enclosed in quotation marks e.g. "-d=datafile.inv"

3.1.2 Command Line Options

When running MTfit from the command line, there are many options available, and these can be listed using:

$ MTfit -h

For a description of these options see Chapter 10.

The command line defaults can be set using a defaults file. This is recursively checked in 3 locations:

1. MTFITDEFAULTSPATH environmental variable (could be a system level setting)

2. .MTfitdefaults file in the users home directory

3. .MTfitdefaults file in the current working directory

The higher number file over-writes defaults in the lower files if they conflict.

The structure of the defaults file is simply:

key:attr

e.g.:

dc:True
algorithm:iterate

3.2 Python Interpreter

Running MTfit from the python interpreter is done as:

>>> import MTfit
>>> args=['-o','-d']
>>> MTfit.__run__(args)

Where args correspond to the command line arguments (see Chapter 10.

It is also possible to create the Inversion object:

>>> import MTfit
>>> inversion=MTfit.Inversion(*args,**kwargs)
>>> inversion.forward()

The descriptions of the Inversion initialisation arguments can be found in the __init__ docstrings, and 13.

3.3 Input Data

There are several different input data types, and it is also possible to add additional parsers using the MTfit.
parsers entry point.

The required data structure for running MTfit is very simple, the inversion expects a python dictionary of the data
in the format:

8 Chapter 3. Running MTfit
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>>> data={'PPolarity':{'Measured':numpy.matrix([[-1],[-1]...]),
'Error':numpy.matrix([[0.01],[0.02],...]),
'Stations':{'Name':['Station1','Station2',...],

'Azimuth':numpy.matrix([[248.0],[122.3]...]),
'TakeOffAngle':numpy.matrix([[24.5],[22.8]...]),

}
},

'PSHAmplitudeRatio':{...},
...
'UID':'Event1'
}

For more information on the data keywords and how to set them up, see Inversion docstrings.

The data dictionary can be passed directly to the Inversion object (simple if running within python), or from a
binary pickled object, these can be made by simply using pickle (or cPickle):

>>> pickle.dump(data,open(filename,'wb'))

The coordinate system is that the Azimuth is angle from x towards y and TakeOffAngle is the angle from positive
z.

For data in different formats it is necessary to write a parser to convert the data into this dictionary format.

There is a parser for csv files with format

3.3.1 CSV

There is a CSV format parser which reads CSV files. The CSV file format is to have events split by blank lines, a
header line showing where the information is, UID and data-type information stored in the first column, e.g.:

UID=123,,,,
PPolarity,,,,
Name,Azimuth,TakeOffAngle,Measured,Error
S001,120,70,1,0.01
S002,160,60,-1,0.02
P/SHRMSAmplitudeRatio,,,,
Name,Azimuth,TakeOffAngle,Measured,Error
S003,110,10,1,0.05 0.04
,,,,
PPolarity ,,,,
Name,Azimuth,TakeOffAngle,Measured,Error
S003,110,10,1,0.05

This is a CSV file with 2 events, one event ID of 123, and PPolarity data at station S001 and station S002 and
P/SHRMSAmplitude data at station S003, and a second event with no ID (will default to the event number, in this
case 2) with PPolarity data at station S003.

3.3.2 hyp

There is a hyp format parser which reads hyp files as defined by NonLinLoc21, this allows output files from
NonLinLoc to be directly read.

3.4 Output

The default output is to output a MATLAB file containing 2 structures and a cell array, although there are two
other possible formats, and others can be added (see MTfit.extensions). The Events structure has the following

21 http://alomax.free.fr/nlloc/soft6.00/formats.html#_location_hypphs_

3.4. Output 9
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fieldnames: MTspace and Probability.

• MTspace - The moment tensor samples as a 6 by n vector of the form:

Mxx
Myy
Mzz
sqrt(2)*Mxy
sqrt(2)*Mxz
sqrt(2)*Myz

• Probability - The corresponding probability values

The Other structure contains information about the inversion

The Stations cell array contains the station information, including, if available, the polarity:

Name Azimuth(angle from x) TakeOffAngle(angle from z) P Polarity (if available)

A log file for each event is also produced to help with debugging and understanding the results.

3.4.1 Pickle format

It is also possible to output the data structure as a pickled file using the pickle output options, storing the output
dictionary as a pickled file.

3.4.2 hyp format

The results can be outputted in the NonLinLoc hyp format22, with the range of solutions sampled outputted as a
binary file with the following format:

binary file version (unsigned long integer)
total_number_samples(unsigned long integer)
number_of_saved_samples(unsigned long integer)
converted (bool flag)
Ln_bayesian_evidence (double)
Kullback-Liebeler Divergence from sampling prior (double)

Then for each moment tensor sample (up to number_of_saved_samples ):

Probability (double)
Ln_probability(double)
Mnn (double)
Mee (double)
Mdd (double)
Mne (double)
Mnd (double)
Med (double)

if Converted is true then each sample also contains:

gamma (double)
delta (double)
kappa (double)
h (double)
sigma (double)
u (double)
v (double)

(continues on next page)

22 http://alomax.free.fr/nlloc/soft6.00/formats.html#_location_hypphs_
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(continued from previous page)

strike1 (double)
dip1 (double)
rake1 (double)
strike2 (double)
dip2 (double)
rake2 (double)

If there are multiple events saved, then the next event starts immediately after the last with the same format. The
output binary file can be re-read into python using MTfit.inversion.read_binary_output().

3.5 Running in parallel

The code is written to run in parallel using multiprocessing, it will initialise as many threads as the system reports
available. A single thread mode can be forced using:

• -l, –singlethread, –single, –single_thread flag on the command line

• parallel=False keyword in the MTfit.inversion.Inversion object initialisation

It is also possible to run this code on a cluster using qsub [requires pyqsub]. This can be called from the comman-
dline using a flag:

• -q, –qsub, –pbs

This runs using a set of default parameters, however it is also possible to adjust these parameters using comman-
dline flags (use -h flag for help and usage).

There is a bug when using mpi and very large result sizes, giving a size error (negative integer) in mpi4py. If this
occurs, lower the sample size and it will be ok.

Warning: If running this on a server, be aware that not setting the number of workers option
--numberworkers, when running in parallel, means that as many processes as processors will be spawned,
slowing down the machine for any other users.

3.5. Running in parallel 11
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CHAPTER 4

Tutorial: Using MTfit

MTfit is a bayesian approach to moment tensor inversion, allowing rigorous inclusion of uncertainties. This
section shows a simple series of examples for running MTfit.

The example data is included in examples/example_data.py and are purely data that are used as an exam-
ple, rather than a necessarily good solution.

These examples show some of the common usage of MTfit. However, the reasons behind the choice of approach
have not always been well explained. The next chapter (Chapter 5) includes real and synthetic data used in
the Pugh et al. 2016a paper as an example of the results that can be obtained using MTfit, along with some
explanation of the parameter choices made.

The tutorials described in this chapter are:

1. Creating a Data Dictionary

2. P Polarity Inversion

3. P/SH Amplitude Ratio Inversion

4. Double-Couple Inversion

5. Time Limited Inversion

6. Parallel MPI Inversion

7. Submitting to a Cluster

8. Inversion from a CSV File

9. Location Uncertainty

10. Running from the Command Line

11. Scatangle file binning

4.1 Creating a Data Dictionary

The input data dictionary (see Input Data) can either be pickled or not pickled. The structure is simple:

13
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>>> import numpy as np
>>> data = {'PPolarity': {'Measured': np.matrix([[-1], [-1], [1], [1]]),

'Error': np.matrix([[0.01], [0.02], [0.4], [0.1]]),
'Stations':{'Name': ['Station1', 'Station2', 'Station3',

'Station4'],
'Azimuth': np.matrix([[248.0], [122.3],

[182.3], [35.2]]),
'TakeOffAngle': np.matrix([[24.5], [22.8],

[74.5], [54.3]])}}
→˓,

'UID': 'Event1'}

This has created a data dictionary for Event1 with P Polarity observations at 4 stations:

>>> print data
{'PPolarity': {'Stations': {'TakeOffAngle': matrix([[ 24.5],

[ 22.8],
[ 74.5],
[ 54.3]]),

'Name': ['Station1', 'Station2', 'Station3', 'Station4'],
'Azimuth': matrix([[ 248. ],

[ 122.3],
[ 182.3],
[ 35.2]])},

'Measured': matrix([[-1],
[-1],
[ 1],
[ 1]]),

'Error': matrix([[ 0.01],
[ 0.02],
[ 0.4 ],
[ 0.1 ]])},

'UID': 'Event1'}

If there were more observations such as P/SH Amplitude Ratios, the data dictionary above would need to be
updated:

>>> data['P/SHAmplitudeRatio'] = {'Measured': np.matrix([[1242, 1113], [742, 2341],
[421, 112], [120, 87]]),

'Error': np.matrix([[102, 743], [66, 45], [342, 98], [14,
→˓11]]),

'Stations': {'Name': ['Station5', 'Station6',
'Station7', 'Station8'],

'Azimuth': np.matrix([[163.0], [345.3],
[25.3], [99.2]]),

'TakeOffAngle': np.matrix([[51.5], [76.8],
[22.5], [11.3]]),

}
}

This has added P/SH Amplitude Ratio observations for 4 more stations to the data dictionary:

>>> print data
{'PPolarity': {'Stations': {'TakeOffAngle': matrix([[ 24.5],

[ 22.8],
[ 74.5],
[ 54.3]]),

'Name': ['Station1', 'Station2', 'Station3', 'Station4'],
'Azimuth': matrix([[ 248. ],

[ 122.3],
[ 182.3],
[ 35.2]])},

(continues on next page)
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(continued from previous page)

'Measured': matrix([[-1],
[-1],
[ 1],
[ 1]]),

'Error': matrix([[ 0.01],
[ 0.02],
[ 0.4 ],
[ 0.1 ]])},

'P/SHAmplitudeRatio': {'Stations': {'TakeOffAngle': matrix([[ 51.5],
[ 76.8],
[ 22.5],
[ 11.3]]),

'Name': ['Station5', 'Station6', 'Station7', 'Station8'],
'Azimuth': matrix([[ 163. ],

[ 345.3],
[ 25.3],
[ 99.2]])},

'Measured': matrix([[1242, 1113],
[ 742, 2341],
[ 421, 112],
[ 120, 87]]),

'Error': matrix([[102, 743],
[ 66, 45],
[342, 98],
[ 14, 11]])},

'UID': 'Event1'}

The amplitude ratio Measured and Error numpy matrices have the observations of the ratio numerator and
denominator at each station, i.e. in this case, Station5 has P Amplitude is 1242 and SH Amplitude is 1113,
along with P error 102 and SH error 743. The split into numerator and denominator is required because the
appropriate PDF is the ratio PDF (see Amplitude Ratio PDF).

This dictionary can either be provided as a construction argument for the Inversion object:

>>> import MTfit
>>> inversion_object = MTfit.Inversion(data)
>>> inversion_object.forward()

Or read in from the command line:

>>> import cPickle
>>> cPickle.dump(data, open('Event1.inv', 'wb'))

This has created a pickled dictionary called Event1.inv in the current directory. To perform the inversion, open
a shell in the same directory:

$ MTfit -d Event1.inv

This will create an output file Event1MT.mat which contains the MATLAB output data (see Output).

The creation of the dictionary can easily be automated from different data types by writing a simple parser for the
format.

4.2 P Polarity Inversion

Using the above tutorial, it is simple to carry out a P polarity inversion, examples/p_polarity.py shows
the example script and data and can be run in the examples directory.

The script can be run from the command line as:

4.2. P Polarity Inversion 15
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$ python p_polarity.py

The parameters used are:

• algorithm = ’iterate’ - uses an iterative random sampling approach (see Random Monte Carlo sampling).

• parallel = True - tries to run in parallel using multiprocessing23.

• phy_mem = 0.5 - uses a soft limit of 500Mb of RAM for estimating the sample sizes (This is only a soft
limit, so no errors are thrown if the memory usage increases above this).

• dc = False - runs the full moment tensor inversion.

• max_samples = 1000000 - runs the inversion for 1,000,000 samples.

The Inversion object is created and then the forward model run with the results automatically outputted:

# Create the inversion object with the set parameters..
inversion_object = Inversion(data, algorithm=algorithm, parallel=parallel,

phy_mem=phy_mem, dc=dc, max_samples=max_
→˓samples,

convert=True)
# Run the forward model based inversion
inversion_object.forward()

The output file is P_Polarity_Example_OutputMT.mat.

The source PDF can be plotted (Fig. 4.1)

Fig. 1: Hudson plot of the example results from examples/p_polarity.py (Plotted using MTplot MATLAB
code)

Increasing the number of samples can improve the fit at the expense of time taken to run the inversion. Re-running
the inversion with more samples (10,000,000) takes longer, but produces a better density of sampling (output file
is P_Polarity_Example_Dense_OutputMT.mat).

The source PDF can be plotted (Fig. 4.2)

23 https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
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Fig. 2: Hudson plot of the example results from examples/p_polarity.py (Plotted using MTplot MATLAB
code)

4.3 P/SH Amplitude Ratio Inversion

Example script for running P/SH amplitude ratio inversion is examples/p_sh_amplitude_ratio.py To
run the script:

$ python p_sh_amplitude_ratio.py

The parameters used are:

• algorithm = ’iterate’ - uses an iterative random sampling approach (see Random Monte Carlo sampling).

• parallel = True - tries to run in parallel using multiprocessing24.

• phy_mem = 1 - uses a soft limit of 1Gb of RAM for estimating the sample sizes (This is only a soft limit,
so no errors are thrown if the memory usage increases above this).

• dc = False - runs the full moment tensor inversion.

• max_samples = 1000000 - runs the inversion for 1,000,000 samples.

The Inversion object is created and then the forward model run with the results automatically outputted:

# Create the inversion object with the set parameters..
inversion_object = Inversion(data, algorithm=algorithm, parallel=parallel,

phy_mem=phy_mem, dc=dc, max_samples=max_
→˓samples,

convert=True)

# Run the forward model based inversion
inversion_object.forward()

The output file is P_SH_Amplitude_Ratio_Example_OutputMT.mat.

24 https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
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It is also possible to run the inversion for as many samples as possible in a given time (output file is
P_Polarity_Example_Time_OutputMT.mat) by setting the parameters:

• algorithm = ’time’ - uses an iterative random sampling approach (see Random Monte Carlo sampling) until
a specified time has elapsed.

• max_time = 300 - runs the inversion for 300 seconds.

The Inversion object is created and then the forward model run with the results automatically outputted:

ns the inversion for a given time period.
rithm = 'time'
est:
# Run inversion for test
max_time = 10
:
# Length of time to run for in seconds.
max_time = 300
eate the inversion object with the set parameters..
rsion_object = Inversion(data, algorithm=algorithm, parallel=parallel,

phy_mem=phy_mem, dc=dc, max_time=max_time,
→˓convert=True)
n the forward model based inversion
rsion_object.forward()

4.4 Double-Couple Inversion

Sometimes it may be better to constrain the solution to only the double-couple space, this is easy to do from the
command line using the -c flag (see MTfit command line options):

$ MTfit -c ...

An example script for running a mixed inversion constrained to double-couple space is examples/
double_couple.py. To run the script:

$ python double_couple.py

The inversion is run from a data file, which is the pickled (pickle25/cPickle) data dictionary:

import cPickle
cPickle.dump(data, open('Double_Couple_Example.inv', 'wb'))

The inversion parameters used are:

• algorithm = ’iterate’ - uses an iterative random sampling approach (see Random Monte Carlo sampling)

• parallel = True - tries to run in parallel using multiprocessing26

• phy_mem = 1 - uses a soft limit of 1Gb of RAM for estimating the sample sizes (This is only a soft limit,
so no errors are thrown if the memory usage increases above this)

• dc = True - runs the inversion in the double-couple space.

• max_samples = 100000 - runs the inversion for 100,000 samples.

Since the double-couple space has fewer dimensions than the moment tensor space, fewer samples are required
for good coverage of the space, so only 100,000 samples are used.

The Inversion object is created and then the forward model run with the results automatically outputted:

25 https://docs.python.org/3/library/pickle.html#module-pickle
26 https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
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# Create the inversion object with the set parameters.
inversion_object = Inversion(data_file='Double_Couple_Example.inv',

algorithm=algorithm, parallel=parallel,
phy_mem=phy_mem, dc=dc,
max_samples=max_samples, convert=True)

# Run the forward model based inversion
inversion_object.forward()

4.5 Time Limited Inversion

A different algorithm for the inverson can be set using the algorithm option. In this case the time constrained
algorithm is used (for other options see MTfit.algorithms: Search Algorithms). An example script for running a
time constrained inversion is examples/time_inversion.py. To run the script:

$ python time_inversion.py

The time option for the inversion algorithm sets a maximum time (in seconds) to run the inversion for rather than
a maximum number of samples. To select the algorithm from the command line use:

$MTfit --algorithm=time ...

For the other options see Command Line Options. The inversion parameters used in examples/
time_inversion.py are:

• algorithm = ’time’ - uses an time limited random sampling approach (see Random Monte Carlo sampling)

• parallel = False - runs in a single thread.

• phy_mem = 1 - uses a soft limit of 1Gb of RAM for estimating the sample sizes (This is only a soft limit,
so no errors are thrown if the memory usage increases above this)

• dc = False - runs the inversion in the double-couple space.

• max_time = 120 - runs the inversion for 120 seconds.

• inversion_options = ’PPolarity,P/SHAmplitudeRatio’ - Just uses PPolarity and P/SH Amplitude Ratios
rather than all the data in the dictionary

In this case the inversion_options keyword argument is used to set the data types used in the inversion. If
this is not set the inversion will use all of the available data types in the dictionary that match possible data types
(see Inversion documentation), this is because the example data has other data types that are not desired or not
independent:

>>> data.keys()=['PPolarity','P/SHRMSAmplitudeRatio','P/SVRMSAmplitudeRatio','P/
→˓SHAmplitudeRatio','UID]

The P/SHRMSAmplitudeRatio and the P/SHAmplitudeRatio are not independent, and so cannot both
be used in this inversion.

The Inversion object is created and then the forward model run with the results automatically outputted:

# Create the inversion object with the set parameters.
inversion_object = Inversion(data, algorithm=algorithm, parallel=parallel,

phy_mem=phy_mem, dc=dc, inversion_
→˓options=inversion_options,

max_time=max_time, convert=True)

# Run the forward model based inversion
inversion_object.forward()

The output file is Time_Inversion_Example_OutputMT.mat.

4.5. Time Limited Inversion 19
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It is also possible to run the inversion for the double-couple constrained inversion (output file is
Time_Inversion_Example_OutputDC.mat):

dc = True
# Create the inversion object with the set parameters.
inversion_object = Inversion(data, algorithm=algorithm, parallel=parallel,

phy_mem=phy_mem, dc=dc, inversion_
→˓options=inversion_options,

max_time=max_time, convert=True)
# Run the forward model based inversion
inversion_object.forward()

4.6 Parallel MPI Inversion

Running the inversion using MPI on a multi-node environment (such as a cluster) is done from the command line
using:

$ MTfit -M ...

Warning: Do not use the --mpi-call flag as this is a flag set automatically by the code

The script examples/mpi.py is an example script for running using MPI (It will test if mpi4py27 is installed)

The data file is pickled using cPickle:

# pickle data using cPickle
try:

import cPickle as pickle
except ImportError:

import pickle
# data saved to MPI_Example.inv using cPickle
with open('MPI_Example.inv', 'wb') as f:

pickle.dump(f, data)

And then subprocess28 is used to call the inversion:

# Use subprocess to call MTfit
import subprocess
subprocess.call(['MTfit', '-M', '--data_file=MPI_Example.inv',

'--algorithm=iterate', '--max_samples=100000'])

This is equivalent to (see command line options for more information on the command line options):

$ MTfit -M --data_file=MPI_Example.inv --algorithm=iterate --max_samples=100000

The output file is MPI_Inversion_Example_OutputMT.mat.

The main advantage of running using MPI is to allow for more samples to be tried in a given time by using more
processors.

4.7 Submitting to a Cluster

Submitting an MTfit job to a cluster using qsub uses a simple module called pyqsub (from https://www.
github.com/djpugh/pyqsub) which provides command line options for running qsub.

27 http://mpi4py.scipy.org/
28 https://docs.python.org/3/library/subprocess.html#module-subprocess
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To submit to the cluster from command line, on a computer with qsub available use:

$ MTfit -q ...

There are other available options when submitting to the cluster:

$ MTfit -q --walltime=48:00:00 --nodes=4 --ppn=4 --pmem=2 --emailoptions=ae
--email=example@example.com --name=MTfitClusterTest --queue=auto ...

This submits an MTfit job to the cluster using qsub (-q) with a walltime of 48 hours (--walltime) us-
ing 4 nodes (--nodes) and 4 processors per node (--ppn) with a maximum amount of physical memory
per process of 2Gb (--pmem). The job will send emails on abort and end (--emailoptions) to email
example@example.com (--email). It has a job name of MTfitClusterTest (--name) and is sub-
mitted to the auto queue (--queue).

These options, combined with the other command line options, will be saved to a job script named JobName.
pJobID. For the above case, if the JobID was 207642 a PBS script is saved called MTfitClusterTest.
p207642

4.8 Inversion from a CSV File

MTfit can use a CSV file as input. An example CSV file can be made by running examples/
make_csv_file.py in the examples folder:

$ python make_csv_file.py

This makes a CSV file (called csv_example_file.csv):

UID=Event1,,,,
PPolarity,,,,
Error,Name,TakeOffAngle,Measured,Azimuth
0.1,S0006,112.8,1,210.6
0.3,S0573,110.0,-1,306.7
0.1,S0563,131.4,-1,23.1
0.1,S0016,117.6,1,167.8
0.1,S0567,123.7,-1,41.3
0.1,S0654,110.0,-1,323.4
0.1,S0634,119.7,-1,342.5
0.1,S0533,138.3,-1,354.1
0.1,S0249,155.2,1,153.5
0.1,S0571,113.7,-1,54.5
0.1,S0065,125.6,1,184.2
0.1,S0095,127.4,1,159.2
0.1,S0537,134.9,-1,25.6
0.1,S0372,145.9,1,288.2
0.1,S0097,124.5,1,150.0
P/SHAmplitudeRatio,,,,
TakeOffAngle,Measured,Error,Name,Azimuth
112.8,1.91468406e-08 3.22758296e-08,9.58863666e-10 7.70965062e-09,S0006,210.6
110.0,4.88113677e-09 1.96675583e-08,2.45607268e-10 3.45469389e-09,S0573,306.7
131.4,1.45833761e-07 1.79089155e-09,7.28757867e-09 3.45820500e-09,S0563,23.1
117.6,9.31790661e-08 2.93385249e-08,4.65480572e-09 8.95408759e-09,S0016,167.8
123.7,1.20612039e-07 3.84818185e-08,6.02547046e-09 9.23059636e-09,S0567,41.3
110.0,2.07444768e-08 3.27506473e-08,1.03738569e-09 3.93335483e-09,S0654,323.4
119.7,7.83955802e-08 5.52997744e-08,3.91683797e-09 7.86172468e-10,S0634,342.5
138.3,1.38297893e-07 4.90243560e-08,6.91029070e-09 9.79988215e-10,S0533,354.1
155.2,1.74815653e-07 3.48061608e-08,8.75143170e-09 7.61184113e-10,S0249,153.5
113.7,8.41802958e-08 4.60234127e-08,4.20431936e-09 1.17189815e-08,S0571,54.5
125.6,1.09705743e-07 4.42081432e-08,5.48271153e-09 9.58851515e-10,S0065,184.2
127.4,1.35994091e-07 1.03528610e-08,6.79566727e-09 2.75097217e-09,S0095,159.2

(continues on next page)
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(continued from previous page)

134.9,1.54309735e-07 1.22170773e-08,7.71089395e-09 2.61801853e-09,S0537,25.6
145.9,6.88684554e-09 8.43199415e-08,3.43601244e-10 1.79928175e-09,S0372,288.2
124.5,1.24505851e-07 6.84587855e-09,6.22146156e-09 2.83710916e-09,S0097,150.0
,,,,
P/SVAmplitudeRatio,,,,
Name,Azimuth,Measured,Error,TakeOffAngle
S0006,210.6,3.22758296e-08 8.19892140e-08,7.70965062e-09 9.80424095e-09,112.8
S0573,306.7,1.96675583e-08 3.68506966e-08,3.45469389e-09 3.35913629e-09,110.0
S0563,23.1,1.79089155e-09 3.56992402e-08,3.45820500e-09 3.64333023e-09,131.4
S0016,167.8,2.93385249e-08 6.26397384e-08,8.95408759e-09 8.69575530e-09,117.6
S0567,41.3,3.84818185e-08 1.55744928e-08,9.23059636e-09 4.07140152e-09,123.7
S0654,323.4,3.27506473e-08 4.94388184e-08,3.93335483e-09 4.17167829e-09,110.0
S0634,342.5,5.52997744e-08 3.26269606e-08,7.86172468e-10 1.20208387e-09,119.7
S0533,354.1,4.90243560e-08 4.51596183e-08,9.79988215e-10 1.97681026e-09,138.3
S0249,153.5,3.48061608e-08 8.71989457e-08,7.61184113e-10 1.37314781e-09,155.2
S0571,54.5,4.60234127e-08 4.20042749e-09,1.17189815e-08 4.50190885e-09,113.7
S0065,184.2,4.42081432e-08 6.15020436e-08,9.58851515e-10 3.53524312e-09,125.6
S0095,159.2,1.03528610e-08 3.56854812e-08,2.75097217e-09 2.22496836e-09,127.4
S0537,25.6,1.22170773e-08 5.41945269e-08,2.61801853e-09 2.74678803e-09,134.9
S0372,288.2,8.43199415e-08 1.80916924e-08,1.79928175e-09 2.95196095e-10,145.9
S0097,150.0,6.84587855e-09 3.48806733e-08,2.83710916e-09 1.82493870e-09,124.5
,,,,

This is a CSV file with 2 events, one event ID of Event 1 with PPolarity and P/SHAmplitudeRatio and
P/SVAmplitudeRatio data at 15 receivers, and a second event with no ID (will default to the event number, in
this case 2) with PPolarity data at 15 receivers.

Running an inversion using a CSV file is the same as running a normal inversion. Calling from the command line
is simply called by:

$ MTfit --datafile=thecsvfile.csv ...

The --invext flag sets the file ending that the inversion searches for when no datafile is specified, so to search
for CSV files in the current directory:

$ MTfit --invext=csv

This will try to invert the data from all the CSV files in the current directory.

MTfit can be extended for other inversion file formats using setuptools entry-points

4.9 Location Uncertainty

MTfit can include location uncertainty in the resultant PDF. This requires samples from the location PDF. The
location uncertainty is included in the inversion using a Monte Carlo method (see Bayesian Approach).

This file can be made from the NonLinLoc29
*.scat file using Scat2Angle in the pyNLLoc30 module.

The expected format for the location uncertainty file is:

Probability
StationName Azimuth TakeOffAngle
StationName Azimuth TakeOffAngle

Probability
.
.
.

29 http://alomax.free.fr/nlloc
30 https://github.com/djpugh/pyNLLoc
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e.g.:

504.7
S0271 231.1 154.7
S0649 42.9 109.7
S0484 21.2 145.4
S0263 256.4 122.7
S0142 197.4 137.6
S0244 229.7 148.1
S0415 75.6 122.8
S0065 187.5 126.1
S0362 85.3 128.2
S0450 307.5 137.7
S0534 355.8 138.2
S0641 14.7 120.2
S0155 123.5 117
S0162 231.8 127.5
S0650 45.9 108.2
S0195 193.8 147.3
S0517 53.7 124.2
S0004 218.4 109.8
S0588 12.9 128.6
S0377 325.5 165.3
S0618 29.4 120.5
S0347 278.9 149.5
S0529 326.1 131.7
S0083 223.7 118.2
S0595 42.6 117.8
S0236 253.6 118.6

502.7
S0271 233.1 152.7
S0649 45.9 101.7
S0484 25.2 141.4
S0263 258.4 120.7
.
.
.

MTfit can be extended to use other location PDF file formats using setuptools entry-points

Running with the location uncertainty included will slow the inversion as this requires more memory to store
each of the location samples in the inversion. The number of samples used can be changed by setting the
number_location_samples parameter in the Inversion object:

>>> import MTfit
>>> MTfit.Inversion(...,number_location_samples=10000,...)

This limits the number of station samples to 10,000, reducing the memory requirements and improving the speed.

The script examples/location_uncertainty.py contains an example for the location uncertainty inver-
sion. To run the script:

$ python location_uncertainty.py

The angle scatter file path option can be set from the command line using:

$ MTfit --anglescatterfilepath=./ --angleext=.scatangle ...

This will search in the current directory for scatangle files (default is to search for scatangle files if --angleext
is not specified). The files are matched to the input data files if MTfit is called from the command line. A specific
file or list of files can be set using:
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$ MTfit --anglescatterfilepath=./thisanglefile.scatangle ...

Which uses the thisanglefile.scatangle file in the current directory.

The inversion parameters used in examples/location_uncertainty.py are:

• algorithm = ’time’ - uses an time limited random sampling approach (see Random Monte Carlo sampling)

• parallel = True - runs in multiple threads using multiprocessing31.

• phy_mem = 1 - uses a soft limit of 1Gb of RAM for estimating the sample sizes (This is only a soft limit,
so no errors are thrown if the memory usage increases above this)

• dc = False - runs the inversion in the double-couple space.

• max_time = 60 - runs the inversion for 60 seconds.

• inversion_options = ’PPolarity’ - Just uses PPolarity rather than all the data in the dictionary

• location_pdf_file_path = ’Location_Uncertainty.scatangle’

The Inversion object is created and then the forward model run with the results automatically outputted:

# Location uncertainty path
location_pdf_file_path = 'Location_Uncertainty.scatangle'
# Create the inversion object with the set parameters..
inversion_object = Inversion(data, location_pdf_file_path=location_pdf_
→˓file_path,

algorithm=algorithm, parallel=parallel, phy_
→˓mem=phy_mem, dc=dc,

inversion_options=inversion_options, max_
→˓time=max_time,

convert=True)
# Run the forward model based inversion
inversion_object.forward()

The output file is Location_Uncertainty_Example_OutputMT.mat.

Including the location uncertainty in an inversion is slower, since fewer samples are used in a given time. Setting
the number of station samples parameter to a smaller number can reduce this:

# Reduce the number of station samples to increase the
# number of moment tensor samples tried
number_station_samples = 10000
# Create the inversion object with the set parameters..
inversion_object = Inversion(data, location_pdf_file_path=location_pdf_
→˓file_path,

algorithm=algorithm, parallel=parallel, phy_
→˓mem=phy_mem, dc=dc,

inversion_options=inversion_options, max_
→˓time=max_time,

number_station_samples=number_station_
→˓samples, convert=True)
# Run the forward model based inversion
inversion_object.forward()

This tries more samples, however it has a worse sampling of the location PDF than before. Taking this to extremes,
reducing the number_location_samples to 100 improves the number of samples tried but reduces the
quality of the location uncertainty sampling.

The method of including location uncertainty can also be used to include velocity model uncertainty by drawing
location samples from a range of models and combining (see scripts/model_sampling.py).

31 https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
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4.10 Running from the Command Line

MTfit is easy to run from the command line. The installation should install a script onto the path so that:

$ MTfit -h

Gives the command line options. If this does not work see Running MTfit to install the script.

There are many command line options available (see MTfit command line options) but the default settings are
usually ok.

examples/command_line.sh (*nix) or examples/command_line.bat is an example script for run-
ning the inversion from the command line:

#!/usr/bin/sh
echo "Command line MTfit example script\n"
echo "Needs MTfit to have been installed to run.\n"
echo "Making data file - csv_example_file.csv\n"
python make_csv_file.py

echo "MTfit --version:\n"
#Output MTfit version
MTfit --version

echo "Running MTfit from command line:\n"
echo "MTfit --data_file=csv_example*.inv --algorithm=iterate \

--max_samples=100000 -b --inversionoptions=PPolarity"
#Run MTfit from the command line. Options are:
# --data_file=csv_example*.inv - use the data files matching csv_
→˓example*.inv
# --algorithm=iterate - use the iterative algorithm
# --max_samples=100000 - run for 100,000 samples
# -b - carry out the inversion for both the double couple constrained
# and full moment tensor spaces
# --inversionoptions=PPolarity - carry out the inversion using
# PPolarity data only
# --convert - convert the solution using MTconvert.

MTfit --data_file=csv_example*.csv --algorithm=iterate --max_
→˓samples=100000 \

-b --inversionoptions=PPolarity --convert

This uses the data from the CSV example file (see Inversion from a CSV File), prints the version of MTfit being
used and then calls MTfit from the command line. The parameters used are:

• –data_file=csv_*.inv - use the data files matching csv_*.inv

• –algorithm=iterate - use the iterative algorithm

• –max_samples=100000 - run for 100,000 samples

• -b - carry out the inversion for both the double couple constrained and full moment tensor spaces

• –inversionoptions=PPolarity - carry out the inversion using PPolarity data only

• –convert - convert the solution using MTfit.MTconvert.

4.11 Scatangle file binning

Often the scatangle files are large with many samples at similar station angles. The size of these files can be
reduced by binning these samples into similar bins. This can be done either before running MTfit or as a pre-
inversion step using the command line parameters:
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• –bin-scatangle=True - run the scatangle binning before the inversion

• –bin-size=1.0 - set a bin size of 1.0 degrees.

This can be run in parallel, which can speed up the process, using the same command line arguments as before.

The new files are outputted with _bin_1.0 appended if the bin-size is 1.0, and are automatically used in the inversio
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CHAPTER 5

Tutorial: Using MTfit with Real Data

The previous chapter has introduced many of the different options available in MTfit. This chapter explains the
reasoning behind the choice of these parameters using synthetic and real examples.

5.1 Synthetic Event

Fig. 1: Beachball plot of the synthetic source and receiver positions for the location (Plotted using MTplot MAT-
LAB code)

The synthetic event shown here (Fig. 5.1)has been generated from a double-couple source using a finite difference
approach (Bernth and Chapman, 2011). Gaussian random noise was added to the data, which were manually
picked for both P and S arrival times and P polarities, and then located using NonLinLoc32 and a simplified
version of the known velocity model. The arrival time picks were used to automatically window and measure P,
SH, and SV amplitudes.

32 http://alomax.free.fr/nlloc
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5.1.1 Synthetic P Polarity Inversion

There are 16 P-polarity arrivals for the synthetic event, and the locations of these receivers are shown in the figure
to the right. These receivers provide quite good coverage of the focal sphere, although there is not much constraint
on the fault planes due to the large spacings between receivers of contrasting polarities.

>>> from example_data import synthetic_event
>>> data=synthetic_event()
>>> print data['PPolarity']
{'Error': matrix([[0.05],

[0.05],
[0.05],
[0.01],
[0.01],
[0.01],
[0.01],
[0.01],
[0.01],
[1. ],
[0.01],
[1. ],
[1. ],
[0.01],
[0.05],
[0.05]]), 'Measured': matrix([[-1],
[-1],
[ 1],
[-1],
[ 1],
[-1],
[-1],
[-1],
[ 1],
[ 1],
[-1],
[-1],
[-1],
[ 1],
[-1],
[ 1]]), 'Stations': {'Azimuth': matrix([[ 55.9],
[ 76.9],
[277.9],
[ 5.4],
[224.7],
[ 31.9],
[ 47.9],
[ 45.2],
[224.6],
[122.6],
[328.4],
[ 45.2],
[309.3],
[187.7],
[ 16.1],

[193.4]]), 'Name': ['S0517', 'S0415', 'S0347', 'S0534
→˓',

'S0244', 'S0618', 'S0650', 'S0595', 'S0271', 'S0155', 'S0529',
→˓

'S0649', 'S0450', 'S0195', 'S0588', 'S0142'], 'TakeOffAngle':
matrix([[122.8],

[120.8],
[152.4],

(continues on next page)
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(continued from previous page)

[138.7],
[149.6],
[120. ],
[107.4],
[117. ],
[156.4],
[115.3],
[133.3],
[109.1],
[139.9],
[147.2],
[128.7],
[137.6]])}}

examples/synthetic_event.py contains a script for the double-couple and full moment tensor inversion
of the source. It can be run as:

$ python synthetic_event.py case=ppolarity

Adding a -l flag will run the inversion in a single thread.

The important part of the script is:

# print output data
print(data['PPolarity'])
data['UID'] += '_ppolarity'
# Set inversion parameters
# Use an iteration random sampling algorithm
algorithm = 'iterate'
# Run in parallel if set on command line
parallel = parallel
# uses a soft memory limit of 1Gb of RAM for estimating the sample sizes
# (This is only a soft limit, so no errors are thrown if the memory usage
# increases above this)
phy_mem = 1
# Run in double-couple space only
dc = True
# Run for one hundred thousand samples
max_samples = 100000
# Set to only use P Polarity data
inversion_options = 'PPolarity'
# Set the convert flag to convert the output to other source
→˓parameterisations
convert = True
# Create the inversion object with the set parameters.
inversion_object = Inversion(data, algorithm=algorithm, parallel=parallel,

inversion_options=inversion_options, phy_
→˓mem=phy_mem, dc=dc,

max_samples=max_samples, convert=convert)
# Run the forward model
inversion_object.forward()
# Run the full moment tensor inversion
# Increase the max samples due to the larger source space to 10 million
→˓samples
max_samples = 10000000
# Create the inversion object with the set parameters.
inversion_object = Inversion(data, algorithm=algorithm, parallel=parallel,

inversion_options=inversion_options, phy_
→˓mem=phy_mem, dc=not dc,

max_samples=max_samples, convert=convert)
# Run the forward model

(continues on next page)
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inversion_object.forward()
# Equivalent to pickling the data:
# >>> from example_data import synthetic_event
# >>> data=synthetic_event()
# >>> import cPickle
# >>> cPickle.dump(data,open('synthetic_event_data.inv','wb'))
# And then calling from the command line
# MTfit --algorithm=iterate --pmem=1 --double-couple --max-
→˓samples=100000 \
# --inversion-options=PPolarity --convert synthetic_event_data.inv
# MTfit --algorithm=iterate --pmem=1 --max-samples=10000000 \
# --inversion-options=PPolarity --convert synthetic_event_data.inv

The chosen algorithm is the iterate algorithm (see Random Monte Carlo sampling) for 100 000 samples for
the double-couple case and 10 000 000 for the full moment tensor inversion. 100 000 samples in the double-
couple space corresponds to approximately 50 samples in each parameter (strike, dip cosine, and rake). While
this more dense samplings are possible, this produces a good sampling of the posterior PDF quickly, especially
when run in parallel.

Warning: If running this in parallel on a server, be aware that because the number of workers option
number_workers is not set, as many processes as processors will be spawned, slowing down the machine
for any other users.

10 000 000 samples for the full moment tensor inversion may seem like a coarse sampling, however, due to
the higher noise level and the use of P polarity data only, there is much less constraint on the full moment tensor
source PDF so this sampling still provides a good approximation of the results.

This script is equivalent to pickling the data:

>>> from example_data import synthetic_event
>>> data=synthetic_event()
>>> import cPickle
>>> cPickle.dump(data,open('synthetic_event_data.inv','wb'))

And then calling from the command line (Assuming parallel running: -l flag to run on a single processor):

$ MTfit --algorithm=iterate --pmem=1 --double-couple --max-samples=100000 \
--inversion-options=PPolarity --convert synthetic_event_data.inv

$ MTfit --algorithm=iterate --pmem=1 --max-samples=10000000 \
--inversion-options=PPolarity --convert synthetic_event_data.inv

These inversions should not take long to run (running on a single core of an i5 processor, the two inversions
take 2 and 72 seconds respectively), although the conversions using MTfit.MTconvert can add to this
time, but will reduce the time when plotting the results. The solutions are outputted as a MATLAB file for
the DC and MT solutions respectively, with name synthetic_example_event_ppolarityDC.mat and
synthetic_example_event_ppolarityMT.mat respectively.

The results are shown in Fig. 5.2.

5.1.2 Synthetic Polarity and Amplitude Ratio Inversion

Including amplitude ratios (P/SH and P/SV) in the inversion can improve the source constraint, but, as shown in
Pugh et al. 2016a, the amplitude ratio can include a systematic error that is dependent on the noise level, leading
to deviations from the "True" source.
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Fig. 2: Beachball plot showing the fault plane orientations for the double-couple constrained inversion and the
marginalised source-type PDF for the full moment tensor inversion of the synthetic data using polarities(Plotted
using MTplot MATLAB code).

Warning: Amplitudes and amplitude ratios can show systematic deviations from the "True" value due to the
noise and the method of measuring the amplitudes. Consequently, care must be taken when using amplitude
ratio data in the source inversion, including tests to see if the different amplitude ratios are consistent with each
other and the polarity only inversion.

These tests are ignored in this example, but can lead to very sparse solutions in the source inversion.

examples/synthetic_event.py contains a script for the double-couple and full moment tensor inversion
of the source. It can be run as:

$ python synthetic_event.py case=ar

Adding a -l flag will run the inversion in a single thread.

The important part of the script is:

# print output data
print(data['PPolarity'])
print(data['P/SHRMSAmplitudeRatio'])
print(data['P/SVRMSAmplitudeRatio'])
data['UID'] += '_ar'
# Set inversion parameters
# Use an iteration random sampling algorithm
algorithm = 'iterate'
# Run in parallel if set on command line
parallel = parallel
# uses a soft memory limit of 1Gb of RAM for estimating the sample sizes
# (This is only a soft limit, so no errors are thrown if the memory usage
# increases above this)
phy_mem = 1
# Run in double-couple space only
dc = True
# Run for one hundred thousand samples
max_samples = 100000
# Set to only use P Polarity data
inversion_options = ['PPolarity', 'P/SHRMSAmplitudeRatio',

'P/SVRMSAmplitudeRatio']
# Set the convert flag to convert the output to other source
→˓parameterisations

(continues on next page)

5.1. Synthetic Event 31



MTfit: A Bayesian Method for Source Inversion, Release 1.0.5

(continued from previous page)

convert = False
# Create the inversion object with the set parameters.
inversion_object = Inversion(data, algorithm=algorithm, parallel=parallel,

inversion_options=inversion_options, phy_
→˓mem=phy_mem, dc=dc,

max_samples=max_samples, convert=convert)
# Run the forward model
inversion_object.forward()
# Run the full moment tensor inversion
# Increase the max samples due to the larger source space to 50 million
→˓samples
max_samples = 50000000
# Create the inversion object with the set parameters.
inversion_object = Inversion(data, algorithm=algorithm, parallel=parallel,

inversion_options=inversion_options, phy_
→˓mem=phy_mem, dc=not dc,

max_samples=max_samples, convert=convert)
# Run the forward model
inversion_object.forward()
# Equivalent to pickling the data:
# >>> from example_data import synthetic_event
# >>> data=synthetic_event()
# >>> import cPickle
# >>> cPickle.dump(data,open('synthetic_event_data.inv','wb'))
# And then calling from the command line
# MTfit --algorithm=iterate --pmem=1 --double-couple --max-
→˓samples=100000 \
# --inversion-options=PPolarity,P/SHRMSAmplitudeRatio,P/
→˓SVRMSAmplitudeRatio \
# --convert synthetic_event_data.inv
# MTfit --algorithm=iterate --pmem=1 --max-samples=50000000 \
# --inversion-options=PPolarity,P/SHRMSAmplitudeRatio,P/
→˓SVRMSAmplitudeRatio \
# --convert synthetic_event_data.inv

The chosen algorithm is the iterate algorithm (see Random Monte Carlo sampling) for 100 000 samples for
the double-couple case and 50 000 000 for the full moment tensor inversion. 100 000 samples in the double-
couple space corresponds to approximately 50 samples in each parameter (strike, dip cosine, and rake). While
this more dense samplings are possible, this produces a good sampling of the posterior PDF quickly, especially
when run in parallel.

Warning: If running this in parallel on a server, be aware that because the number of workers option
number_workers is not set, as many processes as processors will be spawned, slowing down the machine
for any other users.

50 000 000 samples are used instead of the 10 000 000 samples in the Synthetic P Polarity Inversion exam-
ple because amplitude ratios provide a much stronger constraint on the source type, so more samples are required
for an effective sampling of the source PDF.

This script is equivalent to pickling the data:

>>> from example_data import synthetic_event
>>> data=synthetic_event()
>>> import cPickle
>>> cPickle.dump(data,open('synthetic_event_data.inv','wb'))

And then calling from the command line (Assuming parallel running: -l flag to run on a single processor):
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$ MTfit --algorithm=iterate --pmem=1 --double-couple --max-samples=100000 \
--inversion-options=PPolarity,P/SHRMSAmplitudeRatio,P/SVRMSAmplitudeRatio \
--convert synthetic_event_data.inv

$ MTfit --algorithm=iterate --pmem=1 --max-samples=10000000 \
--inversion-options=PPolarity,P/SHRMSAmplitudeRatio,P/SVRMSAmplitudeRatio \
--convert synthetic_event_data.inv

These inversions should not take long to run (running on a single core of an i5 processor, the two inversions take
20 and 436 seconds respectively), although the conversions using MTfit.MTconvert can add to this time,
but will reduce the time when plotting the results. These run times are longer than for only polarity data, both
because of the additional data, and the increased complexity of the ratio-pdf-label. The solutions are outputted as
a MATLAB file for the DC and MT solutions respectively, with name synthetic_example_event_arDC.
mat and synthetic_example_event_arMT.mat respectively.

The results are shown in Fig. 5.3.

Fig. 3: Beachball plot showing the fault plane orientations for the double-couple constrained inversion and the
marginalised source-type PDF for the full moment tensor inversion of the synthetic data using polarities and
amplitude ratios (Plotted using MTplot MATLAB code).

5.2 Krafla Event

A strongly non-double-couple event, with manually picked P and S arrival times and P polarities, and then located
using NonLinLoc33 is used as an example for inversions with real data. In this case the S arrivals were hard to
measure an amplitude for, so amplitude ratios are ignored. Instead, polarities and polarity probabilities (calculated
using the approach described in Pugh et al. 2016a and implemented in :ref:rom autopol) are used separately to
invert for the source, along with including the location data (Fig. 5.4). This event is shown in Pugh et al. 2016a
and investigated in more detail in Watson et al. 2015.

5.2.1 Krafla P Polarity Inversion

There are 21 P-polarity arrivals for the synthetic event, and the locations of these receivers are shown in the figure
on the right. There is quite a large depth uncertainty, leading to a large variation in take-off angles (also shown in
the figure on the right)

>>> from example_data import krafla_event
>>> data=krafla_event()

(continues on next page)
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Fig. 4: Beachball plot of the effect of the location uncertainty on the receivers (dots, darker are higher probability
locations) (Plotted using MTplot MATLAB code)

(continued from previous page)

>>> print data['PPolarity']
{'Error': matrix([[0.01],

[0.01],
[0.01],
[0.01],
[0.01],
[0.01],
[0.01],
[0.01],
[0.01],
[0.01],
[0.01],
[0.01],
[0.01],
[0.01],
[0.01],
[0.01],
[0.01],
[0.01],
[0.01],
[0.01],
[0.01]]), 'Measured': matrix([[-1],
[-1],
[-1],
[-1],
[-1],
[-1],
[-1],
[-1],
[-1],
[-1],
[-1],
[-1],
[-1],
[-1],
[-1],

(continues on next page)
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[-1],
[-1],
[-1],
[-1],
[-1],
[-1]]), 'Stations': {'Azimuth': matrix([[254.9],
[102.5],
[347.4],
[178.3],
[215. ],
[234. ],
[120.3],
[350.4],
[298.6],
[141.8],
[288.4],
[186.2],
[131.4],
[ 48.4],
[239.6],
[151. ],
[284. ],
[ 19.6],
[100.9],
[319.8],
[219.4]]), 'Name': ['KVO0', 'K080', 'K040', 'K200', 'REN0',

'K120', 'K100', 'K008', 'K020', 'K140', 'K060', 'K250', 'K170',
'K050', 'K090', 'K210', 'K010', 'GHA0', 'K110', 'K070', 'K220'],
'TakeOffAngle': matrix([[ 77.
],

[108.8],
[104.3],
[ 87.4],
[ 69.7],
[ 86.2],
[ 90.4],
[ 72.1],
[ 78.8],
[ 90. ],
[103.2],
[ 73.2],
[ 74.7],
[101.1],
[103.6],
[ 76.3],
[ 71.5],
[ 68.1],
[ 86.3],
[137.5],
[ 72.6]])}}

examples/krafla_event.py contains a script for the double-couple and full moment tensor inversion of
the source. It can be run as:

$ python krafla_event.py case=ppolarity

Adding a -l flag will run the inversion in a single thread.

The important part of the script is:

5.2. Krafla Event 35



MTfit: A Bayesian Method for Source Inversion, Release 1.0.5

# print output data
print(data['PPolarity'])
data['UID'] += '_ppolarity'
# Set inversion parameters
# Use an iteration random sampling algorithm
algorithm = 'iterate'
# Run in parallel if set on command line
parallel = parallel
# uses a soft memory limit of 1Gb of RAM for estimating the sample sizes
# (This is only a soft limit, so no errors are thrown if the memory usage
# increases above this)
phy_mem = 1
# Run in double-couple space only
dc = True
# Run for one hundred thousand samples
max_samples = 100000
# Set to only use P Polarity data
inversion_options = 'PPolarity'
# Set the convert flag to convert the output to other source
→˓parameterisations
convert = True
# Set location uncertainty file path
location_pdf_file_path = 'krafla_event.scatangle'
# Handle location uncertainty
# Set number of location samples to use (randomly sampled from PDF) as
→˓this
# reduces calculation time
# (each location sample is equivalent to running an additional event)
number_location_samples = 5000
# Bin Scatangle File
bin_scatangle = True
# Use MTfit.__core__.MTfit function
MTfit(data, location_pdf_file_path=location_pdf_file_path,
→˓algorithm=algorithm,

parallel=parallel, inversion_options=inversion_options, phy_mem=phy_
→˓mem, dc=dc,

max_samples=max_samples, convert=convert, bin_scatangle=bin_
→˓scatangle,

number_location_samples=number_location_samples)
# Change max_samples for MT inversion
max_samples = 1000000
# Create the inversion object with the set parameters.
MTfit(data, location_pdf_file_path=location_pdf_file_path,
→˓algorithm=algorithm,

parallel=parallel, inversion_options=inversion_options, phy_mem=phy_
→˓mem,

dc=not dc, max_samples=max_samples, convert=convert,
bin_scatangle=bin_scatangle, number_location_samples=number_

→˓location_samples)
# Equivalent to pickling the data and outputting the location uncertainty:
# >>> from example_data import krafla_event,krafla_location
# >>> data=krafla_event()
# >>> open('krafla_event.scatangle','w').write(krafla_location())
# >>> import cPickle
# >>> cPickle.dump(data,open('krafla_event.inv','wb'))
# And then calling from the command line
# MTfit --location_pdf_file_path=krafla_event.scatangle --
→˓algorithm=iterate \
# --pmem=1 --double-couple --max-samples=100000 \
# --inversion-options=PPolarity --convert --bin-scatangle krafla_event.
→˓inv
# MTfit --location_pdf_file_path=krafla_event.scatangle --
→˓algorithm=iterate \ (continues on next page)
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# --pmem=1 --max-samples=10000000 --inversion-options=PPolarity --
→˓convert \
# --bin-scatangle krafla_event.inv

In this example the MTfit.__core__.MTfit() function is used instead of creating the inversion object
directly. Again, the chosen algorithm is the iterate algorithm (see Random Monte Carlo sampling) for 100
000 samples for the double-couple case and 1 000 000 for the full moment tensor inversion. The location
uncertainty distribution is binned (--bin_scatangle), which runs before the main inversion is carried out.
This uses the source-scatangle extension to both parse and bin the location PDF distribution.

Warning: If running this in parallel on a server, be aware that because the number of workers option
number_workers is not set, as many processes as processors will be spawned, slowing down the machine
for any other users.

This script is equivalent to pickling the data:

>>> from example_data import krafla_event
>>> data=krafla_event()
>>> import cPickle
>>> cPickle.dump(data,open('krafla_event_data.inv','wb'))

And then calling from the command line (Assuming parallel running: -l flag to run on a single processor):

$ MTfit --location_pdf_file_path=krafla_event.scatangle --algorithm=iterate \
--pmem=1 --double-couple --max-samples=100000 --inversion-options=PPolarity \
--convert --bin-scatangle krafla_event_data.inv

$ MTfit --location_pdf_file_path=krafla_event.scatangle --algorithm=iterate \
--pmem=1 --max-samples=10000000 --inversion-options=PPolarity --convert \
--bin-scatangle krafla_event_data.inv

These inversions will take longer to run than the previous examples, due to the location uncertainty (running
using 8 cores, the two inversions take 4 and 11 minutes respectively), although the conversions using MTfit.
MTconvert can add to this time, but will reduce the time when plotting the results. The solutions are outputted as
a MATLAB file for the DC and MT solutions respectively, with name krafla_event_ppolarityDC.mat
and krafla_event_ppolarityMT.mat respectively.

Fig. 5.5 shows the results plotted using MATLAB.

Fig. 5: Beachball plot showing the fault plane orientations for the double-couple constrained inversion and the
marginalised source-type PDF for the full moment tensor inversion of the krafla data using polarities(Plotted
using MTplot MATLAB code).
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5.2.2 Krafla P Polarity Probability Inversion

There are 21 P-polarity arrivals for the synthetic event, but more observations, and a better understanding of the
uncertainties on the polarities can be obtained using the automated Bayesian polarity probabilities generated using
the approach described in Pugh et al., 2016b, Pugh, 2016a. Nevertheless, much of this example is the same as the
Krafla P Polarity Inversion example.

examples/krafla_event.py contains a script for the double-couple and full moment tensor inversion of
the source. It can be run as:

$ python krafla_event.py case=ppolarityprob

Adding a -l flag will run the inversion in a single thread.

The important part of the script is:

# print output data
print(data['PPolarityProb'])
data['UID'] += '_ppolarityprob'
# Set inversion parameters
# Use an mcmc sampling algorithm
algorithm = 'mcmc'
# Set parallel to false as running McMC
parallel = False
# uses a soft memory limit of 0.5Gb of RAM for estimating the sample sizes
# (This is only a soft limit, so no errors are thrown if the memory usage
# increases above this)
phy_mem = 0.5
# Run both inversions
dc_mt = True
# Run for one hundred thousand samples
chain_length = 100000
# Set to only use P Polarity data
inversion_options = 'PPolarityProb'
# Set the convert flag to convert the output to other source
→˓parameterisations
convert = True
# Set location uncertainty file path
location_pdf_file_path = 'krafla_event.scatangle'
# Handle location uncertainty
# Set number of location samples to use (randomly sampled from PDF) as
→˓this
# reduces calculation time
# (each location sample is equivalent to running an additional event)
number_location_samples = 5000
# Bin Scatangle File
bin_scatangle = True
# Use MTfit.__core__.MTfit function
MTfit(data, location_pdf_file_path=location_pdf_file_path,
→˓algorithm=algorithm,

parallel=parallel, inversion_options=inversion_options, phy_mem=phy_
→˓mem,

chain_length=chain_length, convert=convert, bin_scatangle=bin_
→˓scatangle,

dc_mt=dc_mt, number_location_samples=number_location_samples)
# Trans-Dimensional inversion
data['UID'] += '_transd'
# Use a transdmcmc sampling algorithm
algorithm = 'transdmcmc'
# Use MTfit.__core__.MTfit function
MTfit(data, location_pdf_file_path=location_pdf_file_path,
→˓algorithm=algorithm,

parallel=parallel, inversion_options=inversion_options, phy_mem=phy_
→˓mem, (continues on next page)
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chain_length=chain_length, convert=convert, bin_scatangle=bin_
→˓scatangle,

number_location_samples=number_location_samples)
# Equivalent to pickling the data and outputting the location uncertainty:
# >>> from example_data import krafla_event,krafla_location
# >>> data=krafla_event()
# >>> open('krafla_event.scatangle','w').write(krafla_location())
# >>> import cPickle
# >>> cPickle.dump(data,open('krafla_event_data.inv','wb'))
# And then calling from the command line
# MTfit --location_pdf_file_path=krafla_event.scatangle --algorithm=mcmc -
→˓b \
# --pmem=1 --double-couple --max-samples=100000 \
# --inversion-options=PPolarityProb --convert --bin-scatangle \
# krafla_event.inv
# MTfit --location_pdf_file_path=krafla_event.scatangle --
→˓algorithm=transdmcmc \
# --pmem=1 --max-samples=100000 --inversion-options=PPolarityProb \
# --convert --bin-scatangle krafla_event.inv

In this example the MTfit.__core__.MTfit() function is used instead of creating the inversion object
directly. The chosen algorithm is the mcmc algorithm (see Markov chain Monte Carlo sampling) for a chain
length of 100 000 samples for both the double-couple case and the full moment tensor inversion. Additionally
a trans-dimensional McMC approach is run, allowing comparison between the two.

The location uncertainty distribution is binned (--bin_scatangle), which runs before the main inversion is
carried out. This uses the extensions/scatangle.py extension to both parse and bin the location PDF
distribution.

Warning: If running this in parallel on a server, be aware that because the number of workers option
number_workers is not set, as many processes as processors will be spawned, slowing down the machine
for any other users.

This script is equivalent to pickling the data:

>>> from example_data import krafla_event
>>> data=krafla_event()
>>> import cPickle
>>> cPickle.dump(data,open('krafla_event_data.inv','wb'))

And then calling from the command line:

$ MTfit --location_pdf_file_path=krafla_event.scatangle -l --algorithm=mcmc -b \
--pmem=1 --double-couple --max-samples=100000 --inversion-

→˓options=PPolarityProb \
--convert --bin-scatangle krafla_event_data.inv

$ MTfit --location_pdf_file_path=krafla_event.scatangle -l --algorithm=transdmcmc \
--pmem=1 --max-samples=100000 --inversion-options=PPolarityProb --convert \
--bin-scatangle krafla_event_data.inv

These inversions will take longer to run than the previous examples, both due to the location uncertainty, the
McMC algorithms, and the non-parallel running (running on a single process on an i5 processor, the inversions
take 7 hours), although the conversions using MTfit.MTconvert can add to this time, but will reduce the time
when plotting the results. The solutions are outputted as a MATLAB file for the DC and MT solutions respectively,
with name krafla_event_ppolarityDC.mat and krafla_event_ppolarityMT.mat respectively.

Fig. 5.6 shows the results plotted using MATLAB.

The transdmcmc algorithm option produces similar results to the normal McMC example, and both results are
consistent with the random sampling approach for polarity data (Krafla P Polarity). The chain-lengths may be on
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Fig. 6: Beachball plot showing the fault plane orientations for the double-couple constrained inversion and the
marginalised source-type PDF for the full moment tensor inversion of the krafla data using polarity probabilities
(Plotted using MTplot MATLAB code).

the long side, and it is possible that shorter chains would produce satisfactory sampling of the solution PDF.

Fig. 5.7 shows the results for the transdmcmc inversion plotted using MATLAB.

Fig. 7: The marginalised source-type PDF for the full moment tensor inversion of the krafla data using polarity
probabilities and the reversible jump (trans-dimensional) McMC approach (Plotted using MTplot MATLAB code).

5.3 Bayesian Evidence

The Bayesian evidence estimates the evidence for the model given the posterior PDF and the parameter priors. It
accounts for the model dimensions, and can penalise the higher dimensional model by the parameter priors. The
Bayesian evidence is:

p (𝑑𝑎𝑡𝑎|𝑚𝑜𝑑𝑒𝑙) =

∫︁
x

p (𝑑𝑎𝑡𝑎|𝑥) p (𝑥|𝑚𝑜𝑑𝑒𝑙) d𝑥.
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Since MTfit produces random samples of the source PDF, so the Bayesian evidence is calculated as a sum over
the samples:

p (𝑑𝑎𝑡𝑎|𝑚𝑜𝑑𝑒𝑙) =
∑︁
𝑥

p (𝑑𝑎𝑡𝑎|𝑥) p (𝑥|𝑚𝑜𝑑𝑒𝑙) 𝛿𝑥,

but care must be taken with the choice of the prior parameterisation. This must correspond to the same parameter-
isation in which the Monte Carlo samples were drawn, either directly or by correcting both the prior distribution
and the 𝛿𝑥 values. A Monte Carlo approach can be affected by small sample sizes in the integration, which is
sometimes the case when the source PDF is dominated by a few very large probability samples.

MTfit produces a Bayesian evidence estimate for a constrained inversion. These can be combined for the DC
and MT models, with ℬ corresponding to a Bayesian evidence estimate:

ln (ℬmax) = max (ln (ℬDC) , ln (ℬMT)) ,

𝑝DC =
eln(ℬDC)−ln(ℬmax)

eln(ℬDC)−ln(ℬmax) + eln(ℬMT)−ln(ℬmax)
,

𝑝MT =
eln(ℬMT)−ln(ℬmax)

eln(ℬDC)−ln(ℬmax) + eln(ℬMT)−ln(ℬmax)
.

For the examples shown above, the model probability estimates from the Bayesian evidence are:

Example 𝑝DC 𝑝MT

Synthetic Polarities 0.64 0.36
Synthetic Polarity and Amplitude Ratios 0.82 0.18
Krafla P Polarity 0.0008 0.9992

These can be calculated using the MTfit.probability.model_probabilities() function, which
takes the logarithm of the Bayesian evidence for each model type as an argument:

MTfit.probability.model_probabilities(*args)
Calculate the model probabilities for a discrete set of models using the ln_bayesian_evidences, provided as
args.

e.g. to compare between DC and MT:

pDC,pMT=model_probabilities(dc_ln_bayesian_evidence,mt_ln_bayesian_evidence)

Args floats - ln_bayesian_evidence for each model type

Returns

tuple: Tuple of the normalised model probabilities for the corresponding ln_bayesian_evidence
inputs

The normal McMC approach cannot be used to estimate the model probabilities, however the trans-dimensional
example is consistent with the Krafla P Polarity model probabilities as that produces an estimate 𝑝DC = 0.

MTfit also calculates the Kullback-Liebler divergence of the resultant PDF from the sampling prior, which is a
measure of how much difference there is between the resultant PDF and the prior information. This is outputted
during the inversion approach (when using Monte Carlo random sampling), and saved to the output file.

5.4 Joint Inversion

MTfit can also carry out joint invesions and include relative amplitude data (Pugh et al., 2015t). This examples
uses data from two co-located synthetic events with overlapping receivers. examples/relative_event.py
contains a script for the double-couple and full moment tensor inversion of the source. It can be run as:

$ python relative_event.py
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Adding a -l flag will run the inversion in a single thread.

The important part of the script is:

# Set inversion parameters
# Use an iteration random sampling algorithm
algorithm = 'iterate'
# Run in parallel if set on command line
parallel = parallel
# uses a soft memory limit of 1Gb of RAM for estimating the sample sizes
# (This is only a soft limit, so no errors are thrown if the memory usage
# increases above this)
phy_mem = 1
# Run in double-couple space only
dc = True
# Run for 10 million samples - quite coarse for relative inversion of two
→˓events
max_samples = 10000000
# Set to only use P Polarity data
inversion_options = ['PPolarity', 'PAmplitude']
# Set the convert flag to convert the output to other source
→˓parameterisations
convert = True
# Create the inversion object with the set parameters.
inversion_object = Inversion(data, algorithm=algorithm, parallel=parallel,

inversion_options=inversion_options, phy_
→˓mem=phy_mem, dc=dc,

max_samples=max_samples, convert=convert,
→˓multiple_events=True,

relative_amplitude=True)
# Run the forward model
inversion_object.forward()
# Run the full moment tensor inversion
# Use mcmc algorithm for full mt space as random sampling can require a
# prohibitive number of samples
algorithm = 'mcmc'
# Set McMC parameters
burn_length = 30000
chain_length = 100000
min_acceptance_rate = 0.1
max_acceptance_rate = 0.3
# Create the inversion object with the set parameters.
inversion_object = Inversion(data, algorithm=algorithm, parallel=False,

inversion_options=inversion_options, phy_
→˓mem=phy_mem, dc=not dc,

chain_length=chain_length, max_acceptance_
→˓rate=max_acceptance_rate,

min_acceptance_rate=min_acceptance_rate,
→˓burn_length=burn_length,

convert=convert, multiple_events=True,
→˓relative_amplitude=True)
# Run the forward model
inversion_object.forward()
# Equivalent to pickling the data:
# >>> from example_data import relative_event
# >>> data=relative_event()
# >>> import cPickle
# >>> cPickle.dump(data,open('relative_event_data.inv','wb'))
# And then calling from the command line
# MTfit --algorithm=iterate --pmem=1 --double-couple --max-
→˓samples=10000000 \
# --inversion-options=PPolarity,PAmplitude --convert --relative \
# --multiple-events relative_event_data.inv

(continues on next page)
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# MTfit --algorithm=mcmc --pmem=1 --chain-length=100000 \
# --burn_in=30000 --min_acceptance_rate=0.1 \
# --max_acceptance_rate=0.3 --inversion-options=PPolarity,PAmplitude \
# --convert --relative --multiple-events relative_event_data.inv

In this example the MTfit.inversion.Inversion class is created directly. The chosen algorithm for the
double-couple inversion is the iterate algorithm (see Random Monte Carlo sampling) for 10 000 000 sam-
ples for the double-couple case. A large sample size is required when running the joint inversion because if the
probabilities of obtaining a non-zero probability sample for both events is less than or equal to the product of the
probabilities of obtaining a non-zero probability sample for the events individually, i.e if the fraction of non-zero
probability samples for event 1 is 𝑓1 and the fraction for event 2 is 𝑓2, then the fraction for the joint samping
𝑓𝑗 ≤ 𝑓1.𝑓2. Consequently it soon becomes infeasible to run the monte-carlo sampling algorithm for the full
moment tensor case.

The full moment tensor inversion uses the mcmc algorithm to reduce the dependence of the result on the sample
size. The burn in length is set to 30 000 and the chain length to 100 000, while the targeted acceptance rate
window is reduced from the normal McMC selection (0.3 - 0.5), instead targetting between 0.1 and 0.3.

Warning: If running this in parallel on a server, be aware that because the number of workers option
number_workers is not set, as many processes as processors will be spawned, slowing down the machine
for any other users.

This script is equivalent to pickling the data:

>>> from example_data import relative_event
>>> data=relative_event()
>>> import cPickle
>>> cPickle.dump(data,open('relative_event_data.inv','wb'))

And then calling from the command line:

$ MTfit --algorithm=iterate --pmem=1 --double-couple --max-samples=10000000 \
--inversion-options=PPolarity,PAmplitude --convert --relative \
--multiple-events relative_event_data.inv

$ MTfit --algorithm=mcmc --pmem=1 --chain-length=100000 \
--burn_in=30000 --min_acceptance_rate=0.1 \
--max_acceptance_rate=0.3 --inversion-options=PPolarity,PAmplitude \
--convert --relative --multiple-events relative_event_data.inv

These inversions will take longer to run than the previous examples, due to the increased sample size required
for the joint PDF. The solutions are outputted as a MATLAB file for the DC and MT solutions respectively, with
name MTfitOutput_joint_inversionDC.mat and MTfitOutput_joint_inversionMT.mat re-
spectively.

Fig. 5.8 shows the results plotted using the plot module of MTfit.

These have improved the constraint compared to the joint inversion without relative amplitudes (Fig. 5.9).

Althought the constraint has improved, the relative amplitudes have changed the full moment tensor solution for
the second event, possibly due to errors in the P-amplitude estimation (Pugh et al., 2016a).
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Fig. 8: Beachball plot showing the fault plane orientations for the double-couple constrained inversion and the
marginalised source-type PDF for the full moment tensor inversion for two events, inverted using P polarities and
relative P amplitude ratios.

Fig. 9: Beachball plot showing the fault plane orientations for the double-couple constrained inversion and the
marginalised source-type PDF for the full moment tensor inversion for two events, inverted using P polarities.
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CHAPTER 6

Bayesian Approach

The Bayesian approach used by MTfit is based on the approach described in Pugh et al, 2016a

6.1 Bayes Theory

Inversion approaches fit model parameters to observed data, to find the best fitting parameters. In MTfit, the
probability of the data being correct is evaluated for the possible sources. The resulting estimates of the PDF can
be combined for all the data to approximate the true PDF for the source. This PDF can be considered to describe
the probability of the observed data for a given source, the likelihood, 𝑝 (data |model). However the value of
interest in such an inversion is the probability of the model given the observed data, the posterior PDF. This can
be evaluated from the likelihood using Bayes’ Theory (Bayes and Price, 1763 , Laplace, 1812 , Sivia, 2000) is
given simply by:

p (model |data) =
p (data |model) p (model)

p (data)

This relates the data likelihood p (data |model) to the posterior probability p (model |data) via the prior proba-
bilities p (model) and p (data). The prior distributions incorporate the known information about the two param-
eters, and although the choice of prior is not trivial, it does not have a large affect on the posterior PDF given
enough data.

6.2 Uncertainties

Source inversion is particularly sensitive to uncertainties, and since it is usually carried out after several other
required steps, the effect of the uncertainties may be difficult to understand. The uncertainties can be broken down
into several different types: instrument errors, model errors and background noise.

Although the interdependencies between the uncertainties can be explored, a quantitative relationship is not
known. For such a treatment to be truly rigorous, the variations in these errors must be included throughout the
inversion. The Bayesian formulation allows rigorous inclusion of uncertainties in the problem using marginalisa-
tion. Marginalisation removes the dependence of the joint PDF, 𝑃 (𝐴,𝐵) , on one of the variables, by integrating
over the PDF for that variable:

p (𝐴) =

∫︁
p (𝐴 , 𝐵) 𝑑𝐵 =

∫︁
p (𝐴 |𝐵) p (𝐵) 𝑑𝐵
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Marginalisation can be used to incorporate the uncertainties in the inversion into the final PDF.

It is assumed that the noise has a mean and variance that are measurable, and therefore the most ambiguous
(maximum entropy) distribution for these measurements is the Gaussian distribution (Pugh et al, 2015). For de-
meaned data, the noise can be assumed also to have zero mean, and a standard deviation 𝜎𝑚𝑒𝑠, so that the PDF
p (∆𝑚𝑒𝑠), is:

p (∆𝑚𝑒𝑠) =
1√︀

2𝜋𝜎2
𝑚𝑒𝑠

e
− Δ2

𝑚𝑒𝑠
2𝜎2

𝑚𝑒𝑠

There are several different types of uncertainties however most can be simplified to independent uncertainties on
each trace, and uncertainties in the underlying model.

6.3 Posterior PDF

The likelihoods for the two different data types are described in chapter 7.

The posterior PDFs for the data used in MTfit are, for a known Earth model:

p (d′ |M, t, 𝜖,k) =

∫︁∫︁ 𝑀∑︁
𝑗=1

𝑁∏︁
𝑖=1

[︁
p
(︁
𝑌𝑖 |Aij = a𝑗 · M̃, 𝜎i, 𝜛𝑖

)︁
p
(︁
Ri |Ai = a𝑗 · M̃, 𝜎i, 𝜛𝑖

)︁]︁
p (𝜎) p (𝜛) 𝑑𝜎𝑑𝜛

An unknown earth model, samples from the model distribution, G𝑘, are included using a Monte Carlo method
based marginalisation:

p (d′ |M, t, 𝜖,k) =

∫︁∫︁ 𝑄∑︁
𝑘=1

𝑀∑︁
𝑗=1

𝑁∏︁
𝑖=1

[︁
p
(︁
𝑌𝑖 |Aijk = a𝑗𝑘 · M̃, 𝜎i, 𝜛𝑖

)︁
p
(︁
Ri |Aijk = a𝑗𝑘 · M̃, 𝜎i, 𝜛𝑖

)︁]︁
p (𝜎) p (𝜛) 𝑑𝜎𝑑𝜛,

where a𝑗𝑘 = a (x𝑗 ,G𝑘) refers to the station propagation coefficients associated with the location at x𝑗 and earth
model G𝑘.

A common location method is NonLinLoc by Anthony Lomax34 which can produces samples from the location
PDF to be used in the Monte Carlo method described above (see the location uncertainty tutorial in chapter 4).

The symbols used in these PDFs are:

Symbol Meaning
𝑌 Polarity
𝐴 Amplitude
𝜎𝑦 Uncertainty
𝜛 Mispick Probability
M̃ Moment Tensor 6-vector
M Moment Tensor
a Receiver Ray Path Coefficients
𝜎 Measurment Uncertainty
𝑅 Amplitude Ratio
𝐴 Amplitude
𝜖 Nuisance Parameters
k Known Parameters
t Arrival times

34 http://alomax.free.fr/nlloc
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CHAPTER 7

Probability

MTfit has PDF s for two data types, with two different approaches to measuring the polarity.

However, it is possible to add PDF s for other data-types (see Extending MTfit)

7.1 Polarity PDF

Pugh et al, 2016a has a derivation of the polarity PDF used in MTfit. It is given by:

p (𝑌 = 𝑦 |𝐴, 𝜎𝑦, 𝜛) =
1

2

(︃
1 + erf

(︃
𝑦𝐴√
2𝜎𝑦

)︃)︃
(1 −𝜛) +

1

2

(︃
1 + erf

(︃
−𝑦𝐴√

2𝜎𝑦

)︃)︃
𝜛

The different symbols in this equation are:

Symbol Meaning
𝑌 Polarity
𝐴 Amplitude
𝜎𝑦 Uncertainty
𝜛 Mispick Probability

and erf (𝑥) is the error function, given by erf (𝑥) = 2√
𝜋

∫︀ 𝑥

0
e−𝑡2d𝑡.

This approach requires an estimate of the uncertainty 𝜎𝑦 . This is not the noise at the arrival, since it does not scale
correctly in comparison to the modelled amplitude due to the propagation effects. It could be estimated from the
fractional amplitude uncertainty, but this will be greater than or equal to the true value, because the amplitude at a
receiver is only ever less than or equal to the maximum theoretical amplitude (accounting for propagation effects).
Consequently, this would most likely overestimate the uncertainty. It is clear that the uncertainty value should
be station-specific as noise environments at different stations often vary, so the maximum estimate of the event
signal-to-noise ratio (SNR) fails to account for the variation across the receivers.

The difficulty in estimating 𝜎𝑦 is increased further when polarity picking is done manually, so the uncertainty
on the trace is perhaps not even known. Due to the difficulty in quantifying the uncertainty, it is best left as a
user-defined parameter that reflects the confidence in the arrival polarity pick, which can be mapped to the pick
quality. However, Pugh et al, 2016b proposes an alternate method for calculating polarity uncertainties that can
be included in this framework (see Polarity Probability PDF)
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7.2 Polarity Probability PDF

Pugh et al, 2016b introduces an alternate method for estimating the polarity, using an automated Bayesian prob-
ability estimate. This approach results in estimates of the postive and negative polarity probabilities. autopol
provides a Python module for calculating these values (Pugh, 2016a), and may be available on request. These
observations can be included in MTfit, although the data independence must be preserved. The PDF is:

p (𝜓|𝐴, 𝜎, 𝜏, 𝜎𝜏 , 𝜛) = 1 −𝜛 + (2𝜛 − 1) [H (𝐴) + 𝜓 − 2H (𝐴)𝜛]

The different symbols in this equation are:

Symbol Meaning
𝜓 Polarity Probability
𝐴 Amplitude
𝜎 Trace Noise
𝜏 Pick Time
𝜎𝜏 Pick Time Noise
𝜛 Mispick Probability

and H (𝑥) is the Heaviside step function, given by H (𝑥) =
∫︀ 𝑥

−∞ 𝛿 (𝑠) d𝑠.

7.3 Amplitude Ratio PDF

The amplitude ratio PDF used in MTfit is based on the ratio PDF for two gaussian distributed variables (Hinkley,
1969):

𝑃 (𝑟) =
𝑏 (𝑟) 𝑑 (𝑟)

𝜎𝑥𝜎𝑦𝑎3 (𝑟)
√

2𝜋

[︃
Φ

(︃
𝑏 (𝑟)

𝑎 (𝑟)
√︀

1 − 𝜌2

)︃
− Φ

(︃
−𝑏 (𝑟)

𝑎 (𝑟)
√︀

1 − 𝜌2

)︃]︃

+

√︀
1 − 𝜌2

𝜋𝜎𝑥𝜎𝑦𝑎2 (𝑟)
𝑒

(︂
− 𝑐

2(1−𝜌2)

)︂

With coefficients 𝑎 (𝑟), 𝑏 (𝑟), 𝑐 and 𝑑 (𝑟) given by :

𝑎 (𝑟) =

√︃
𝑟2

𝜎2
𝑥

− 2𝜌
𝑟

𝜎𝑥𝜎𝑦
+

1

𝜎2
𝑦

𝑏 (𝑟) =
𝜇𝑥𝑟

𝜎2
𝑥

− 𝜌
𝜇𝑥 + 𝜇𝑦𝑟

𝜎𝑥𝜎𝑦
+
𝜇𝑦

𝜎2
𝑦

𝑐 =
𝜇2
𝑥

𝜎2
𝑥

− 2𝜌
𝜇𝑥𝜇𝑦

𝜎𝑥𝜎𝑦
+
𝜇2
𝑦

𝜎2
𝑦

𝑑 (𝑟) = 𝑒

(︂
𝑏2(𝑟)−𝑐𝑎2(𝑟)

2(1−𝜌2)𝑎2(𝑟)

)︂

The resultant PDF is (unsigned amplitude ratios):

𝑃 (𝑅 = 𝑟 |𝐴𝑥, 𝐴𝑦, 𝜎𝑥, 𝜎𝑦) = ℛ𝒩 (𝑟,𝐴𝑥, 𝐴𝑦, 𝜎𝑥, 𝜎𝑦) + ℛ𝒩 (−𝑟,𝐴𝑥, 𝐴𝑦, 𝜎𝑥, 𝜎𝑦)

With ℛ𝒩 (𝑟, 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦) referring to the ratio PDF above, since 𝜌, the correlation between the variables, is
zero.

The different symbols in this equation are:

Symbol Meaning
𝑅 Amplitude Ratio
𝐴 Amplitude
𝜎 Amplitude Noise
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CHAPTER 8

MTfit.algorithms: Search Algorithms

These algorithms and their effects are explored in Pugh (2015), which expands in further detail on the topics
covered here.

8.1 Algorithms

This module contains the sampling approaches used. Two main approaches are used:

• Random Monte Carlo sampling

• Markov chain Monte Carlo sampling

However, there are also two variants of the Markov chain Monte Carlo (McMC) method:

• Metropolis-Hastings

• Trans-Dimensional Metropolis-Hastings (Reversible Jump)

8.2 Random Monte Carlo sampling

The simplest approach is that of random sampling over the moment tensor or double-couple space. Stochastic
Monte Carlo sampling introduces no biases and provides an estimate for the true PDF, but requires a sufficient
density of sampling to reduce the uncertainties in the estimate. The sampled PDF approaches the true distribution
in the limit of infnite samples. However, this approach is limited both by time and memory. Some benefits can be
gained by only keeping the samples with non-zero probability.

The assumed prior distribution is a uniform distribution on the unit 6-sphere in moment tensor space. This is
equivalent to unit normalisation of the moment tensor six vector:

M̃ =

⎛⎜⎜⎜⎜⎜⎜⎝

𝑀11

𝑀22

𝑀33√
2𝑀12√
2𝑀13√
2𝑀23

⎞⎟⎟⎟⎟⎟⎟⎠ .

This sampling is explored further in Pugh et al, 2015t.
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8.3 Markov chain Monte Carlo sampling

An alternative approach is to use Markov chain Monte Carlo (McMC) sampling. This constructs a Markov chain
(Norris, 1998) of which the equilibrium distribution is a good sample of the target probability distribution.

A Markov chain is a memoryless stochastic process of transitioning between states. The probability of the next
value depends only on the current value, rather than all the previous values, which is known as the Markov property
(Markov, 1954):

p (𝑑𝑛|𝑑𝑛−1, 𝑑𝑛−2, 𝑑𝑛−3, . . . 𝑑0) = p (𝑑𝑛|𝑑𝑛−1) .

A suitable McMC method should converge on the target distribution rapidly. As an approach it is more complex
than the Monte Carlo random sampling approach described above, and by taking samples close to other non-zero
samples, there is moreintelligence to the sampling than in the random Monte Carlo sampling approach.

A Metropolis-Hastings approach is used here (Metropolis, 1953 and Hastings, 1970). The Metropolis-Hastings
approach is a common method for McMC sampling and satisfies the detailed balance condition (Robert and
Casella, 2004, eq. 6.22), which means that the probability density of the chain is stationary. New samples are
drawn from a probability density q (x′|xt) to evaluate the target probability density p (x|d).

The Metropolis-Hastings algorithm begins with a random starting point and then iterates until this initial state is
forgotten (Algorithm). Each iteration evaluates whether a new proposed state is accepted or not. If q (x′|xt) is

symmetric, then the ratio
q(xt|x′)
q(x′|xt)

= 1. The acceptance, alpha, is given by

𝛼 = min

(︂
1,

p (x′|d)

p (xt|d)
.
q (xt|x′)

q (x′|xt)

)︂
,

which can be expanded using Bayes’ Theorem to give the acceptance in terms of the likelihood p (d|x) and prior
p (x),

𝛼 = min

(︂
1,

p (d|x′) p (x′)

p (d|xt) p (xt)
.
q (x𝑡|x′)

q (x′|xt)

)︂
.

The acceptance is the probability that the new sample in the chain, xt+1 is the new sample, x′, otherwise the
original value, xt , is added to the chain again,

xt+1 =

{︃
x′ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝛼

x𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝛼
.

The algorithm used in MTfit is:

Metropolis-Hastings Markov chain Monte Carlo Sampling Algorithm
1 Determine initial value for x0 with non-zero likelihood
2 Draw new sample x′ from transition PDF q (x′|xt)
3 Evaluate likelihood for sample x′

4 Calculate acceptance, 𝛼, for x′.
5 Determine sample xt+1.
6(a) If in learning period:

i If sufficient samples (> 100) have been obtained, update
transition PDF parameters to target ideal acceptance rate.
ii Return to 2 until end of learning period and discard learning
samples.

6(b) Otherwise return to 2 until sufficient samples are drawn.

The source parameterisation is from Tape and Tape (2012), and the algorithm uses an iterative parameterisation
for the learning parameters during a learning period, then generates a Markov chain from the pdf.
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8.3.1 Reversible Jump Markov chain Monte Carlo Sampling

The Metropolis-Hastings approach does not account for variable dimension models. Green (1995) introduced
a new type of move, a jump, extending the approach to variable dimension problems. The jump introduces a
dimension-balancing vector, so it can be evaluated like the normal Metropolis-Hastings shift.

Green (1995) showed that the acceptance for a pair of models 𝑀t and 𝑀 ′ is given by:

𝛼 = min

(︂
1,

p (d|x′,𝑀 ′) p (x′|𝑀 ′) p (𝑀 ′)

p (d|xt,𝑀t) p (xt|𝑀t) p (𝑀t)
.
q (xt|x′)

q (x′|xt)

)︂
,

where q (x′|xt) is the probability of making the transition from parameters xt from model 𝑀t to parameters x′

from model 𝑀 ′, and p (𝑀t) is the prior for the model 𝑀t.

If the models 𝑀t and 𝑀 ′ are the same, the reversible jump acceptance is the same as the Metropolis-Hastings
acceptance, because the model priors are the same. The importance of the reversible jump approach is that it
allows a transformation between different models, and even different dimensions.

The dimension balancing vector requires a bijection between the parameters of the two models, so that the trans-
formation is not singular and a reverse jump can occur. In the case where dim (𝑀 ′) > dim (𝑀t), a vector u of
length dim (𝑀 ′) − dim (𝑀t) needs to be introduced to balance the number of parameters in x′. The values of u
have probability density q (u) and some bijection that maps xt,u → x′, x′ = h (xt,u).

If the jump has a probability j (x) of occurring for a sample x, the transition probability depends on the jump
parameters, u and the transition ratio is given by:

q (xt,u|x′)

q (x′|xt,u)
=

j (x′)

j (xt) q (u)
|J| ,

with the Jacobian matrix, J = 𝜕h(xt,u)
𝜕(xt,u)

.

The general form of the jump acceptance involves a prior on the models, along with a prior on the parameters.
The acceptance for this case is:

𝛼 = min

(︂
1,

p (d|x′,𝑀 ′) p (x′|𝑀 ′) p (𝑀 ′)

p (d|xt,𝑀t) p (xt|𝑀t) p (𝑀t)
.

j (x′)

j (xt) q (u)
|J|
)︂
.

If the jump is from higher dimensions to lower, the bijection describing the transformation has an inverse that
describes the transformation x′ → xt,u, and the acceptance is given by:

𝛼 = min

(︂
1,

p (d|xt,𝑀t) p (xt|𝑀t) p (𝑀t)

p (d|x′,𝑀 ′) p (x′|𝑀 ′) p (𝑀 ′)
.
j (xt) q (u)

j (x′)

⃒⃒
J−1

⃒⃒)︂
.

A simple example used in the literature (see Green, 1995; Brooks et al., 2003) is a mapping from a one dimensional
model with parameter 𝜃 to a two dimensional model with parameters 𝜃1, 𝜃2. A possible bijection is given by:

ℎ (𝜃, 𝑢) =

{︃
𝜃1 = 𝜃 − 𝑢

𝜃2 = 𝜃 + 𝑢

with the reverse bijection given by:

ℎ (𝜃1, 𝜃2) =

{︃
𝜃 = 1

2 (𝜃1 + 𝜃2)

𝑢 = 1
2 (𝜃1 − 𝜃2)

Reversible Jump McMC in Source Inversion

The reversible jump McMC approach allows switching between different source models, such as the double-
couple model and the higher dimensional model of the full moment tensor, and can be extended to other source
models.

The full moment tensor model is nested around the double-couple point, leading to a simple description of the
jumps by keeping the common parameters constant. The Tape parameterisation (Tape and Tape, 2012) allows for
easy movement both in the source space and between models. The moment tensor model has five parameters:

• strike (𝜅)
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• dip cosine (ℎ)

• slip (𝜎)

• eigenvalue co-latitude (𝛿)

• eigenvalue longitude (𝛾)

while the double-couple model has only the three orientation parameters: 𝜅, ℎ, and 𝜎. Consequently, the orienta-
tion parameters are left unchanged between the two models, and the dimension balancing vector for the jump has
two elements, which can be mapped to 𝛾 and 𝛿:

h (𝜅DC, ℎDC, 𝜎DC,u)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜅MT = 𝜅DC

ℎMT = ℎDC

𝜎MT = 𝜎DC

𝛾MT = 𝑢1

𝛿MT = 𝑢2

.

The algorithm used is:

Reversible Jump Markov chain Monte Carlo sampling Algorithm
1 Determine initial value for x0 with non-zero likelihood
2(a) Carry out jump with probability 𝑝jump: Draw new sample

x′ = (x,u) with dimension balancing vector u drawn from
q (𝑢1, 𝑢2).

2(b) Carry out shift with probability 1 − 𝑝jump: Draw new sample x′

from transition PDF q (x′|xt).
3 Evaluate likelihood for sample x′

4 Calculate acceptance, 𝛼, for x′.
5 Determine sample xt+1.
6(a) If in learning period:

i If sufficient samples (> 100) have been obtained, update transition
PDF parameters to target ideal acceptance rate.
ii Return to 2 until end of learning period and discard learning
samples.

6(b) Otherwise return to 2 until sufficient samples are drawn.

8.4 Relative Amplitude

Inverting for multiple events increases the dimensions of the source space for each event. This leads to a much
reduced probability of obtaining a non-zero likelihood sample, because sampling from the n-event distribution
leads to multiplying the probabilities of drawing a non-zero samples, resulting in sparser sampling of the joint
source PDF.

The elapsed time for the random sampling is longer per sample than the individual sampling, and longer than the
combined sampling for both events due to evaluating the relative amplitude PDF. Moreover, increasing the number
of samples 10-fold raises the required time by a factor of 10, requiring some method of reducing the running time
for the inversion, since, given current processor speeds, 1015 samples would take many years to calculate on a
single core. As a result, more intelligent search algorithms are required for the full moment tensor case.

Markov chain approaches are less dependent on the model dimensionality. To account for the fact that the uncer-
tainties in each parameter can differ between the events, the Markov chain shape parameters can be scaled based
on the relative non-zero percentages of the events when they are initialised. The initialisation approaches also need
to be adjusted to account for the reduced non-zero sample probability, such as by initialising the Markov chain
independently for each event. The trans-dimensional McMC algorithm allows model jumping independently for
each event.

Tuning the Markov chain acceptance rate is difficult, as it is extremely sensitive to small changes in the proposal
distribution widths, and with the higher dimensionality it may be necessary to lower the targeted acceptance rate
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to improve sampling. Consequently, care needs to be taken when tuning the parameters to effectively implement
the approaches for relative amplitude data.

8.5 Running Time

Comparing different sample sizes shows that the McMC approaches require far fewer samples than random sam-
pling. However, the random sampling algorithm is quick to calculate the likelihood for a large number of samples,
unlike the McMC approach, because of the extra computations in calculating the acceptance and obtaining new
samples. Some optimisations have been included in the McMC algorithms, including calculating the probability
for multiple new samples at once, with sufficient samples that there is a high probability of containing an accepted
sample. This is more efficient than repeatedly updating the algorithm.

Despite these optimisations, the McMC approach is still much slower to reach comparable sample sizes, and is
slower than would be expected just given the targeted acceptance rate, because of the additional computational
overheads (Fig. :ref:‘8.1<algorithm-run-time>).

Fig. 1: Elapsed Time for different sample sizes of the random sampling algorithm and for McMC algorithms with
different number of unique samples.

Including location uncertainty and model uncertainty in the forward model causes a rapid reduction of the available
samples for a given amount of RAM and increases the number of times the forward model must be evaluated,
lengthening the time for sufficient sampling (Fig. 8.2).

The location uncertainty has less of an effect on the McMC algorithms, since the number of samples being tested at
any given iteration are small. Consequently, as the random sampling approach becomes slower, the fewer samples
required to construct the Markov chain starts to produce good samples of the source PDF at comparable times.
However, there is an initial offset in the elapsed time for the Markov chain Monte Carlo approaches due to the
burn in and initialisation of the algorithm.

Fig. 2: Elapsed Time for different sample sizes of the random sampling algorithm and for McMC algorithms with
different number of unique samples. The velocity model and location uncertainty in the source was included with
a one degree binning reducing the number of location samples from 50,000 to 5, 463.
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The relative amplitude algorithms require an exponential increase in the number of samples as the number of
events being sampled increases (Fig. 8.3). However, the McMC approaches are more intelligent and do not
require the same increase in sample size, but these algorithms can prove difficult to estimate the appropriate
sampling parameters for the proposal distribution.

Fig. 3: Elapsed Time for different sample sizes of the random sampling algorithm and for McMC algorithms with
different number of unique samples for a two event joint PDF with relative P-amplitudes.

8.6 Summary

There are several different approaches to sampling for the forward model. The Monte Carlo random sampling
is quick, although it requires a large number of samples to produce good samplings of the PDF. The McMC
approaches produce good sampling of the source for far fewer samples, but the evaluation time can be long due
to the overhead of calculating the acceptance and generating new samples. Furthermore, these approaches rely on
achieving the desired acceptance rate to sufficiently sample the PDF given the chain length. Including location
uncertainty increases the random sampling time drastically, and has less of an effect on the McMC approaches.

The solutions for the different algorithms and different source types are consistent, but the McMC approach can
be poor at sampling multi-modal distributions if the acceptance rate is too high.

The two different approaches for estimating the probability of the double-couple source type model being correct
are consistent, apart from cases where the PDF is dominated by a few very high probability samples. For these
solutions, the number of random samples needs to be increased sufficiently to estimate the probability well. The
McMC approach cannot easily be used to estimate the double-couple model probabilities, unlike both the random
sampling and trans-dimensional approaches.

Extending these models to relative source inversion leads to a drastically increased number of samples required
for the Monte Carlo random sampling approach that it becomes infeasible with current computation approaches.
However, the McMC approaches can surmount this problem due to the improved sampling approach, but care
must be taken when initialising the algorithm to make sure that sufficient samples are discarded that any initial
bias has been removed, as well as targeting an acceptance rate that does not require extremely large chain lengths
to successfully explore the full space.

The required number of samples depends on each event, and the constraint on the source that is given by the data.
Usually including more data-types can sharpen the PDF, requiring more samples to get a satisfactory sampling of
the event.
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CHAPTER 9

convert

MTfit contains a submodule MTfit.convert that can handle moment tensor conversions. Mostly it is used
with the --convert flag for converting the moment tensor results to the different source parameterisations.
However it can be used separately, and the functions are described here.

9.1 moment_tensor_conversion.py

Module containing moment tensor conversion functions. Acts on the parameters of the moment tensor 3x3 form
or the modified 6-vector form, dependent on the name

The function naming is OriginalVariables_NewVariables

The coordinate system is North (X), East (Y), Down (Z)

MTfit.convert.moment_tensor_conversion.E_GD(E)
Convert the eigenvalues to the Tape parameterisation gamma and delta.

Args E: array of eigenvalues

Returns (numpy.array, numpy.array): tuple of gamma, delta

MTfit.convert.moment_tensor_conversion.E_tk(E)
Convert the moment tensor eigenvalues to the Hudson tau, k parameters

Args E: indexable list/array (e.g numpy.array) of moment tensor eigenvalues

Returns (float, float): tau, k tuple

MTfit.convert.moment_tensor_conversion.E_uv(E)
Convert the eigenvalues to the Hudson i, v parameters

Args E: indexable list/array (e.g numpy.array) of moment tensor eigenvalues

Returns (float, float): u, v tuple

MTfit.convert.moment_tensor_conversion.FP_SDR(normal, slip)
Convert fault normal and slip to strike, dip and rake

Coordinate system is North East Down.

Args normal: numpy matrix - Normal vector slip: numpy matrix - Slip vector

Returns (float, float, float): tuple of strike, dip and rake angles in radians
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MTfit.convert.moment_tensor_conversion.FP_SDSD(N1, N2)
Convert the the fault normal and slip vectors to the strike and dip pairs (all angles in radians).

Args Normal: numpy matrix - Normal vector Slip: numpy matrix - Slip vector

Returns

(float, float, float, float): tuple of strike1, dip1, strike2, dip2 angles in radians

MTfit.convert.moment_tensor_conversion.FP_TNP(normal, slip)
Convert fault normal and slip to TNP axes

Coordinate system is North East Down.

Args normal: numpy matrix - normal vector slip: numpy matrix - slip vector

Returns (numpy.matrix, numpy.matrix, numpy.matrix): tuple of T, N, P vectors

MTfit.convert.moment_tensor_conversion.GD_E(gamma, delta)
Convert the Tape parameterisation gamma and delta to the eigenvalues.

Args gamma: numpy array of gamma values delta: numpy array of delta values

Returns numpy.array: array of eigenvalues

MTfit.convert.moment_tensor_conversion.GD_basic_cdc(gamma, delta)
Convert gamma, delta to basic crack+double-couple parameters

Gamma and delta are the source type parameters from the Tape parameterisation.

Args gamma: numpy array of gamma values delta: numpy array of delta values

Returns tuple of alpha, poisson

Return type (numpy.array, numpy.array)

MTfit.convert.moment_tensor_conversion.MT33_GD(MT33)
Convert the 3x3 Moment Tensor to theTape parameterisation gamma and delta.

Args MT33: 3x3 numpy matrix

Returns (numpy.array, numpy.array): tuple of gamma, delta

MTfit.convert.moment_tensor_conversion.MT33_MT6(MT33)
Convert a 3x3 matrix to six vector maintaining normalisation. 6-vector has the form:

Mxx
Myy
Mzz
sqrt(2)*Mxy
sqrt(2)*Mxz
sqrt(2)*Myz

Args M33: 3x3 numpy matrix

Returns numpy.matrix: MT 6-vector

MTfit.convert.moment_tensor_conversion.MT33_SDR(MT33)
Convert the 3x3 Moment Tensor to the strike, dip and rake.

Args MT33: 3x3 numpy matrix

Returns (float, float, float): tuple of strike, dip, rake angles in radians

MTfit.convert.moment_tensor_conversion.MT33_TNPE(MT33)
Convert the 3x3 Moment Tensor to the T,N,P vectors and the eigenvalues.

Args MT33: 3x3 numpy matrix
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Returns

(numpy.matrix, numpy.matrix, numpy.matrix, numpy.array): tuple of T, N, P vectors and
Eigenvalue array

MTfit.convert.moment_tensor_conversion.MT6_MT33(MT6)
Convert a six vector to a 3x3 MT maintaining normalisation. 6-vector has the form:

Mxx
Myy
Mzz
sqrt(2)*Mxy
sqrt(2)*Mxz
sqrt(2)*Myz

Args MT6: numpy matrix Moment tensor 6-vector

Returns numpy.matrix: 3x3 Moment Tensor

MTfit.convert.moment_tensor_conversion.MT6_TNPE(MT6)
Convert the 6xn Moment Tensor to the T,N,P vectors and the eigenvalues.

Args MT6: 6xn numpy matrix

Returns

(numpy.matrix, numpy.matrix, numpy.matrix, numpy.array): tuple of T, N, P vectors and
Eigenvalue array

MTfit.convert.moment_tensor_conversion.MT6_Tape(MT6)
Convert the moment tensor 6-vector to the Tape parameters.

6-vector has the form:

Mxx
Myy
Mzz
sqrt(2)*Mxy
sqrt(2)*Mxz
sqrt(2)*Myz

Args MT6: numpy matrix six-vector

Returns

(numpy.array, numpy.array, numpy.array, numpy.array, numpy.array): tuple of gamma, delta,
strike, cos(dip) and slip (angles in radians)

MTfit.convert.moment_tensor_conversion.MT6_biaxes(MT6, c=[3.0, 1.0, 1.0, 0, 0, 0,
3.0, 1.0, 0, 0, 0, 3.0, 0, 0, 0, 1.0,
0, 0, 1.0, 0, 1.0])

Convert six vector to bi-axes

Convert the moment tensor 6-vector to the bi-axes decomposition from Chapman, C and Leaney,S, 2011.
A new moment-tensor decomposition for seismic events in anisotropic media, GJI, 188(1), 343-370. The
6-vector has the form:

Mxx
Myy
Mzz
sqrt(2)*Mxy
sqrt(2)*Mxz
sqrt(2)*Myz
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The stiffness tensor can be provided as an input, as a list of the 21 elements of the upper triangular part of
the Voigt stiffness matrix:

C(21) = ( C_11, C_12, C_13, C_14, C_15, C_16,
C_22, C_23, C_24, C_25, C_26,

C_33, C_34, C_35, C_36,
C_44, C_45, C_46,

C_55, C_56,
C_66 )

(upper triangular part of Voigt stiffness matrix)

Alternatively, the default isotropic parameters can be used or a possible isotropic stiffness tensor can be
genereated using (isotropic_c)

Args MT6: numpy matrix Moment tensor 6-vector c: list or numpy array of the 21 element input stiffness
tensor

Returns

(numpy.array, numpy.array, numpy.array): tuple of phi (bi-axes) vectors, explosion value and
area_displacement value.

MTfit.convert.moment_tensor_conversion.MT6c_D6(MT6, c=[3.0, 1.0, 1.0, 0, 0, 0, 3.0,
1.0, 0, 0, 0, 3.0, 0, 0, 0, 1.0, 0, 0, 1.0,
0, 1.0])

Convert the moment tensor 6-vector to the potency tensor. The 6-vector has the form:

Mxx
Myy
Mzz
sqrt(2)*Mxy
sqrt(2)*Mxz
sqrt(2)*Myz

The stiffness tensor can be provided as an input, as a list of the 21 elements of the upper triangular part of
the Voigt stiffness matrix:

C(21) = ( C_11, C_12, C_13, C_14, C_15, C_16,
C_22, C_23, C_24, C_25, C_26,

C_33, C_34, C_35, C_36,
C_44, C_45, C_46,

C_55, C_56,
C_66 )

(upper triangular part of Voigt stiffness matrix)

Alternatively, the default isotropic parameters can be used or a possible isotropic stiffness tensor can be
genereated using (isotropic_c).

Args MT6: numpy matrix Moment tensor 6-vector c: list or numpy array of the 21 element input stiffness
tensor

Returns

numpy.array: numpy array of the potency 6 vector (in the same ordering as the moment tensor
six vector)

MTfit.convert.moment_tensor_conversion.SDR_FP(strike, dip, rake)
Convert the strike, dip and rake in radians to the fault normal and slip.

Args strike: float strike angle of fault plane in radians dip: float dip angle of fault plane in radians rake:
float rake angle of fault plane in radians

Returns (numpy.matrix, numpy.matrix): tuple of Normal and slip vectors
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MTfit.convert.moment_tensor_conversion.SDR_SDR(strike, dip, rake)
Convert strike, dip rake to strike, dip rake for other fault plane

Coordinate system is North East Down.

Args strike: float radians dip: float radians rake: float radians

Returns

(float, float, float): tuple of strike, dip and rake angles of alternate fault plane in radians

MTfit.convert.moment_tensor_conversion.SDR_SDSD(strike, dip, rake)
Convert the strike, dip and rake to the strike and dip pairs (all angles in radians).

Args strike: float strike angle of fault plane in radians dip: float dip angle of fault plane in radians rake:
float rake angle of fault plane in radians

Returns (float, float, float, float): tuple of strike1, dip1, strike2, dip2 angles in radians

MTfit.convert.moment_tensor_conversion.SDR_TNP(strike, dip, rake)
Convert strike, dip rake to TNP vectors

Coordinate system is North East Down.

Args strike: float radians dip: float radians rake: float radians

Returns (numpy.matrix, numpy.matrix, numpy.matrix): tuple of T,N,P vectors.

MTfit.convert.moment_tensor_conversion.SDSD_FP(strike1, dip1, strike2, dip2)
Convert strike and dip pairs to fault normal and slip

Converts the strike and dip pairs in radians to the fault normal and slip.

Args strike1: float strike angle of fault plane 1 in radians dip1: float dip angle of fault plane 1 in radians
strike2: float strike angle of fault plane 2 in radians dip2: float dip of fault plane 2 in radians

Returns (numpy.matrix, numpy.matrix): tuple of Normal and slip vectors

MTfit.convert.moment_tensor_conversion.TNP_SDR(T, N, P)
Convert the T,N,P vectors to the strike, dip and rake in radians

Args T: numpy matrix of T vectors. N: numpy matrix of N vectors. P: numpy matrix of P vectors.

Returns (float, float, float): tuple of strike, dip and rake angles of fault plane in radians

MTfit.convert.moment_tensor_conversion.TP_FP(T, P)
Convert the 3x3 Moment Tensor to the fault normal and slip vectors.

Args T: numpy matrix of T vectors. P: numpy matrix of P vectors.

Returns (numpy.matrix, numpy.matrix): tuple of Normal and slip vectors

MTfit.convert.moment_tensor_conversion.Tape_MT33(gamma, delta, kappa, h, sigma,
**kwargs)

Convert Tape parameters to a 3x3 moment tensor

Args

gamma: float, gamma parameter (longitude on funamental lune takes values between -pi/6 and
pi/6).

delta: float, delta parameter (latitude on funamental lune takes values between -pi/2 and pi/2)

kappa: float, strike (takes values between 0 and 2*pi) h: float, cos(dip) (takes values between 0 and 1)
sigma: float, slip angle (takes values between -pi/2 and pi/2)

Returns numpy.matrix: 3x3 moment tensor

MTfit.convert.moment_tensor_conversion.Tape_MT6(gamma, delta, kappa, h, sigma)
Convert the Tape parameterisation to the moment tensor six-vectors.

Args
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gamma: Gamma parameter (longitude on funamental lune takes values between -pi/6 and pi/6).

delta: Delta parameter (latitude on funamental lune takes values between -pi/2 and pi/2)

kappa: Strike (takes values between 0 and 2*pi) h: Cos(dip) (takes values between 0 and 1) sigma:
Slip angle (takes values between -pi/2 and pi/2)

Returns np.array: Array of MT 6-vectors

MTfit.convert.moment_tensor_conversion.Tape_TNPE(gamma, delta, kappa, h, sigma)
Convert the Tape parameterisation to the T,N,P vectors and the eigenvalues.

Args

gamma: Gamma parameter (longitude on funamental lune takes values between -pi/6 and pi/6).

delta: Delta parameter (latitude on funamental lune takes values between -pi/2 and pi/2)

kappa: Strike (takes values between 0 and 2*pi) h: Cos(dip) (takes values between 0 and 1) sigma:
Slip angle (takes values between -pi/2 and pi/2)

Returns

(numpy.matrix, numpy.matrix, numpy.matrix, numpy.array): T,N,P vectors and Eigenvalues tu-
ple

MTfit.convert.moment_tensor_conversion.basic_cdc_GD(alpha, poisson=0.25)
Convert alpha and poisson ratio to gamma and delta

alpha is opening angle, poisson : ratio lambda/(2(lambda+mu)) Defaults to 0.25. Uses basic crack+double-
couple model of Minson et al (Seismically and geodetically determined nondouble-couple source mecha-
nisms from the 2000 Miyakejima volcanic earthquake swarm, Minson et al, 2007, JGR 112) and Tape and
Tape (The classical model for moment tensors, Tape and Tape, 2013, GJI)

Args alpha: Opening angle in radians (between 0 and pi/2) poisson:[0.25] Poisson ratio on the fault surface.

Returns tuple of gamma, delta

Return type (numpy.array, numpy.array)

MTfit.convert.moment_tensor_conversion.c21_cvoigt(c)
Convert an input stiffness tensor to voigt form

The stiffness tensor needs to be provided as a list of the 21 elements of the upper triangular part of the Voigt
stiffness matrix:

C(21) = ( C_11, C_12, C_13, C_14, C_15, C_16,
C_22, C_23, C_24, C_25, C_26,

C_33, C_34, C_35, C_36,
C_44, C_45, C_46,

C_55, C_56,
C_66 )

(upper triangular part of Voigt stiffness matrix)

Args c: input list of stiffness parameters (21 required)

Returns numpy.array: voigt form of the stiffness tensor

MTfit.convert.moment_tensor_conversion.c_norm(c)
Calculate norm of the stiffness tensor.

The stiffness tensor needs to be provided as a list of the 21 elements of the upper triangular part of the Voigt
stiffness matrix:
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C(21) = ( C_11, C_12, C_13, C_14, C_15, C_16,
C_22, C_23, C_24, C_25, C_26,

C_33, C_34, C_35, C_36,
C_44, C_45, C_46,

C_55, C_56,
C_66 )

(upper triangular part of Voigt stiffness matrix)

Args c: input list of stiffness parameters (21 required)

Returns float: Euclidean norm of the tensor

MTfit.convert.moment_tensor_conversion.is_isotropic_c(c)
Evaluate if an input stiffness tensor is isotropic

The stiffness tensor needs to be provided as a list of the 21 elements of the upper triangular part of the Voigt
stiffness matrix:

C(21) = ( C_11, C_12, C_13, C_14, C_15, C_16,
C_22, C_23, C_24, C_25, C_26,

C_33, C_34, C_35, C_36,
C_44, C_45, C_46,

C_55, C_56,
C_66 )

(upper triangular part of Voigt stiffness matrix)

Args c: input list of stiffness parameters (21 required)

Returns bool: result of is_isotropic check

MTfit.convert.moment_tensor_conversion.isotropic_c(lambda_=1, mu=1, c=False)
Calculate the isotropic stiffness tensor

Calculate isotropic stiffness parameters. The input parameters are either the two lame parameters lambda
and mu, or is a full 21 element stiffness tensor:

C(21) = ( C_11, C_12, C_13, C_14, C_15, C_16,
C_22, C_23, C_24, C_25, C_26,

C_33, C_34, C_35, C_36,
C_44, C_45, C_46,

C_55, C_56,
C_66 )

(upper triangular part of Voigt stiffness matrix)

If the full stiffness tensor is used, the "average" isotropic approximation is calculated using Eqns 81a and
81b from Chapman, C and Leaney,S, 2011. A new moment-tensor decomposition for seismic events in
anisotropic media, GJI, 188(1), 343-370.

Args lambda_: lambda value mu: mu value c: list or numpy array of the 21 element input stiffness tensor
(overrides

lambda and mu arguments)

Returns list: list of 21 elements of the stiffness tensor

MTfit.convert.moment_tensor_conversion.normal_SD(normal)
Convert a plane normal to strike and dip

Coordinate system is North East Down.

Args normal: numpy matrix - Normal vector
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Returns (float, float): tuple of strike and dip angles in radians

MTfit.convert.moment_tensor_conversion.output_convert(mts)
Convert the moment tensors into several different parameterisations

The moment tensor six-vectors are converted into the Tape gamma,delta,kappa,h,sigma parameterisation;
the Hudson u,v parameterisation; and the strike, dip and rakes of the two fault planes are calculated.

Args mts: numpy array of moment tensor six-vectors

Returns dict: dictionary of numpy arrays for each parameter

MTfit.convert.moment_tensor_conversion.tk_uv(tau, k)
Convert the Hudson tau, k parameters to the Hudson u, v parameters

Args tau: float, Hudson tau parameter k: float, Hudson k parameter

Returns (float, float): u, v tuple

MTfit.convert.moment_tensor_conversion.toa_vec(azimuth, plunge, radians=False)
Convert the azimuth and plunge of a vector to a cartesian description of the vector

Args azimuth: float, vector azimuth plunge: float, vector plunge

Keyword Arguments radians: boolean, flag to use radians [default = False]

Returns np.matrix: vector
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CHAPTER 10

MTfit command line options

Command line usage:

MTfit [-h] [-d DATAFILE] [-s LOCATION_PDF_FILE_PATH]
[-a {iterate,time,mcmc,transdmcmc}] [-l] [-n N] [-m MEM] [-c]
[-b] [--nstations NUMBER_STATIONS]
[--nanglesamples NUMBER_LOCATION_SAMPLES] [-f] [--not_file_safe]
[-i INVERSION_OPTIONS] [-o FID] [-x MAX_SAMPLES] [-t MAX_TIME]
[-e] [-r] [--marginalise_relative] [-R] [--invext DATA_EXTENSION]
[--angleext ANGLE_EXTENSION] [-S MINIMUM_NUMBER_INTERSECTIONS]
[-M] [-B] [-X MIN_NUMBER_INITIALISATION_SAMPLES] [-T]
[-Q [QUALITY_CHECK]] [-D] [-V VERBOSITY] [-g]
[-j DIMENSION_JUMP_PROB] [-y {grid}] [-u MIN_ACCEPTANCE_RATE]
[-v MAX_ACCEPTANCE_RATE] [-w ACCEPTANCE_RATE_WINDOW]
[-W WARNINGS] [-z LEARNING_LENGTH] [--version] [--detail]
[--mpi_call] [--output-format {pickle,matlab,hyp}]
[--results-format {full_pdf,hyp}] [--no-dist]
[--dc-prior DC_PRIOR] [--sampling SAMPLING]
[--sample-models SAMPLE_DISTRIBUTION]
[--sampling-prior SAMPLING_PRIOR] [--no-normalise] [--convert]
[--discard DISCARD] [--mpioutput] [--combine_mpi_output]
[--c_generate] [--relative_loop] [--bin-scatangle]
[--bin-size BIN_SCATANGLE_SIZE]
[data_file]

10.1 Positional Arguments:

data_file

Data file to use for the inversion, optional but must be specified either as a positional argument or as an optional
argument (see -d below) If not specified defaults to all *.inv files in current directory, and searches for all an-
glescatterfiles in the directory too. Inversion file extension can be set using –invext option. Angle scatter file
extension can be set using –angleext option
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10.2 Optional Arguments:

-h, --help

show this help message and exit

-d DATAFILE, --datafile DATAFILE, --data_file DATAFILE

Data file to use for the inversion. Can be provided as a positional argument. There are several different data file
types:

• pickled dictionary

• csv file

• NLLOC hyp file

The data file is a pickled python dictionary of the form:

{'DataType':{'Stations':{'Name':['STA1','STA2',...],
'Azimuth':np.matrix([[190],[40],...]),
'TakeOffAngle':np.matrix([[70],[40],...])},
'Measured':np.matrix([[1],[-1],...]),
'Error':np.matrix([[0.01],[0.02],...])}}

e.g.:

{'P/SHRMSAmplitudeRatio':{'Stations':{'Name':['S
0649',"S0162"],
'Azimuth':np.array([90.0,270.0]),
'TakeOffAngle':np.array([30.0,60.0])},
'Measured':np.matrix([[1],[-1]]),
'Error':np.matrix([[ 0.001,0.02],[
0.001,0.001]])}}

Or a CSV file with events split by blank lines, a header line showing which row corresponds to which information
(default is as shown here), UID and data-type information stored in the first column, e.g.:

UID=123,,,,
PPolarity,,,,
Name,Azimuth,TakeOffAngle,Measured,Error
S001,120,70,1,0.01
S002,160,60,-1,0.02
P/SHRMSAmplitudeRatio,,,,
Name,Azimuth,TakeOffAngle,Measured,Error
S003,110,10,1,0.05 0.04
,,,,
PPolarity ,,,,
Name,Azimuth,TakeOffAngle,Measured,Error
S003,110,10,1,0.05

Is a CSV file with 2 events, one event UID of 123, and PPolarity data at S001 and S002 and P/SHRMSAmplitude
data at S003, and a second event with no UID (will default to the event number, in this case 2) with PPolarity data
at S003.

This data format can be constructed manually or automatically.
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-s LOCATION_PDF_FILE_PATH, --anglescatterfilepath LOCATION_PDF_FILE_PATH,
--location_pdf_file_path LOCATION_PDF_FILE_PATH,
--location_file_path LOCATION_PDF_FILE_PATH,
--scatterfilepath LOCATION_PDF_FILE_PATH,
--scatter_file_path LOCATION_PDF_FILE_PATH

Path to location scatter angle files - wild cards behave as normal. To include the model and location uncertainty, a
ray path angle pdf file must be provided. This is of the form:

probability1
Station1 Azimuth1 TakeOffAngle1
Station2 Azimuth2 TakeOffAngle2
.
.
.
StationN AzimuthN TakeOffAngleN

probability2 Station1 Azimuth1 TakeOffAngle1 Station2 Azimuth2 TakeOffAngle2 . . . StationN AzimuthN
TakeOffAngleN

e.g.:

504.7
S0529 326.1 131.7
S0083 223.7 118.2
S0595 42.6 117.8
S0236 253.6 118.6
&&
504.7
S0529 326.1 131.8
S0083 223.7 118.2
S0595 42.7 117.9
S0236 253.5 118.7

-a {iterate,time,mcmc,transdmcmc}, --algorithm {iterate,time,mcmc,transdmcmc}

Selects the algorithm used for the search. [default=time] Possible algorithms are: iterate (random sampling of
the source space for a set number of samples) time (random sampling of the source space for a set time) mcmc
(Markov chain Monte Carlo sampling)

-l, --singlethread, --single, --single_thread

Flag to disable parallel computation

-n N, --numberworkers N, --number_workers N

Set the number of workers used in the parallel computation. [default=all available cpus]

-m MEM, --mem MEM, --memory MEM, --physical_memory MEM, --physicalmemory MEM

Set the maximum memory used in Gb if psutil not available [default=8Gb]

10.2. Optional Arguments: 65



MTfit: A Bayesian Method for Source Inversion, Release 1.0.5

-c, --doublecouple, --double-couple, --double_couple, --dc, --DC

Flag to constrain the inversion to double-couple sources only

-b, --compareconstrained, --compare_constrained

Flag to run two inversions, one constrained to double-couple and one unconstrained

--nstations NUMBER_STATIONS

Set the maximum number of stations without having to load an angle pdf file - used for calculating sample sizes
and memory sizes, and can speed up the calculation a bit, but has no effect on result.

--nanglesamples NUMBER_LOCATION_SAMPLES,
--nlocationsamples NUMBER_LOCATION_SAMPLES,
--number_location_samples NUMBER_LOCATION_SAMPLES,
--number-location-samples NUMBER_LOCATION_SAMPLES

Set the maximum number of angle pdf samples to use. If this is less than the total number of samples, a subset are
randomly selected [default=0].

-f, --file_sample, --file-sample, --filesample, --disk_sample,
--disk-sample, --disksample

Save sampling to disk (allows for easier recovery and reduces memory requirements, but can be slower)

--not_file_safe, --not-file-safe, --notfilesafe, --no_file_safe,
--no-file-safe, --nofilesafe

Disable file safe saving (i.e. copy and write to .mat~ then copy back

-i INVERSION_OPTIONS, --inversionoptions INVERSION_OPTIONS,
--inversion_options INVERSION_OPTIONS

Set the inversion data types to use: comma delimited. If not set, the inversion uses all the data types in the data
file. e.g. PPolarity,P/SHRMSAmplitudeRatio

Needs to correspond to the data types in the data file.

If not specified can lead to independence errors: e.g. P/SH Amplitude Ratio and P/SV Amplitude Ratio can
give SH/SV Amplitude Ratio. Therefore using SH/SV Amplitude Ratio in the inversion is reusing data and will
artificially sharpen the PDF. This applies to all forms of dependent measurements.

-o FID, --out FID, --fid FID, --outputfile FID, --outfile FID

Set output file basename [default=MTfitOutput]
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-x MAX_SAMPLES, --samples MAX_SAMPLES, --maxsamples MAX_SAMPLES,
--max_samples MAX_SAMPLES, --chain_length MAX_SAMPLES,
--max-samples MAX_SAMPLES, --chain-length MAX_SAMPLES, --chainlength MAX_SAMPLES

Iteration algorithm: Set maximum number of samples to use [default=6000000]. McMC algorithms: Set chain
length [default=10000], trans-d McMC [default=100000]

-t MAX_TIME, --time MAX_TIME, --maxtime MAX_TIME, --max_time MAX_TIME

Time algorithm: Set maximum time to use [default=600]

-e, --multiple_events, --multiple-events

Run using events using joint PDF approach

-r, --relative_amplitude, --relative-amplitude

Run using events using joint PDF approach

--marginalise_relative, --marginalise, --marginalise-relative

Flag to marginalise location uncertainty in relative amplitude case [default=False]

-R, --recover

Recover crashed run (ie restart from last event not written out)]

--invext DATA_EXTENSION, --dataextension DATA_EXTENSION,
--dataext DATA_EXTENSION, --data-extension DATA_EXTENSION,
--data_extension DATA_EXTENSION

Set data file extension to search for when inverting on a folder

--angleext ANGLE_EXTENSION, --locationextension ANGLE_EXTENSION,
--locationext ANGLE_EXTENSION, --location-extension ANGLE_EXTENSION,
--location_extension ANGLE_EXTENSION

Set location sample file extension to search for when inverting on a folder

-S MINIMUM_NUMBER_INTERSECTIONS,
--minimum_number_intersections MINIMUM_NUMBER_INTERSECTIONS,
--min_number_intersections MINIMUM_NUMBER_INTERSECTIONS,
--minimum-number-intersections MINIMUM_NUMBER_INTERSECTIONS,
--min-number-intersections MINIMUM_NUMBER_INTERSECTIONS

For relative amplitude inversion, the minimum number of intersecting stations required (must be greater than 1)
[default=2]
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-M, --mpi, --MPI

Run using mpi - will reinitialise using mpirun (mpi etc needs to be added to path)

-B, --benchmark, --benchmarking

Run benchmark tests for the event

-X MIN_NUMBER_INITIALISATION_SAMPLES,
--min_number_check_samples MIN_NUMBER_INITIALISATION_SAMPLES,
--min_number_initialisation_samples MIN_NUMBER_INITIALISATION_SAMPLES

Minimum number of samples for McMC initialiser, or the minimum number of samples required when using
quality check (-Q)

-T, --test, --test

Run MTfit Test suite (if combined with -q runs test suite on cluster

-Q [QUALITY_CHECK], --quality [QUALITY_CHECK]

Run MTfit with quality checks enabled [default=False]. Checks if an event has a percentage of non-zero samples
lower than the flag - values from 0-100.

-D, --debug

Run MTfit with debugging enabled.

-V VERBOSITY, --verbosity VERBOSITY

Set verbosity level for non-fatal errors [default=0].

-g, --diagnostics

Run MTfit with diagnostic output. Outputs the full chain and sampling - wil make a large file.

-j DIMENSION_JUMP_PROB, --jumpProbability DIMENSION_JUMP_PROB,
--jumpProb DIMENSION_JUMP_PROB, --jumpprob DIMENSION_JUMP_PROB,
--jumpProb DIMENSION_JUMP_PROB, --dimensionJumpProb DIMENSION_JUMP_PROB,
--dimensionjumpprob DIMENSION_JUMP_PROB

Sets the probability of making a dimension jump in the Trans-Dimensional McMC algorithm [default=0.01]

-y {grid}, --initialSampling {grid}

Sets the initialisation sampling method for McMC algorithms choices: grid - use grid based sampling to find
non-zero initial sample [default=grid]
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-u MIN_ACCEPTANCE_RATE, --minAcceptanceRate MIN_ACCEPTANCE_RATE,
--minacceptancerate MIN_ACCEPTANCE_RATE,
--min_acceptance_rate MIN_ACCEPTANCE_RATE

Set the minimum acceptance rate for the McMC algorithm [mcmc default=0.3, transdmcmc default=0.05]

-v MAX_ACCEPTANCE_RATE, --maxAcceptanceRate MAX_ACCEPTANCE_RATE,
--maxacceptancerate MAX_ACCEPTANCE_RATE,
--max_acceptance_rate MAX_ACCEPTANCE_RATE

Set the maximum acceptance rate for the McMC algorithm [mcmc default=0.5, transdmcmc default=0.2]

-w ACCEPTANCE_RATE_WINDOW,
--acceptanceLearningWindow ACCEPTANCE_RATE_WINDOW,
--acceptancelearningwindow ACCEPTANCE_RATE_WINDOW

Sets the window for calculating and updating the acceptance rate for McMC algorithms [default=500]

-W WARNINGS, --warnings WARNINGS, --Warnings WARNINGS

Sets the warning visibility.

options are:

• "e","error" - turn matching warnings intoexceptions

• "i","ignore" - never print matching warnings

• "a","always" - always print matchingwarnings

• "d","default" - print the first occurrenceof matching warnings for each location where thewarning is issued

• "m","module" - print the first occurrence ofmatching warnings for each module where the warning isissued

• "o","once" - print only the first occurrenceof matching warnings, regardless of location

-z LEARNING_LENGTH, --learningLength LEARNING_LENGTH,
--learninglength LEARNING_LENGTH, --learning_length LEARNING_LENGTH

Sets the number of samples to discard as the learning period [default=5000]

--version

show program’s version number and exit

--detail

show program’s version number and exit

--mpi_call
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Warning: Do not use - automatically set when spawning mpi subprocess

--output-format {pickle,matlab,hyp}, --output_format {pickle,matlab,hyp},
--outputformat {pickle,matlab,hyp}, --format {pickle,matlab,hyp}

Output file format [default=matlab]

--results-format {full_pdf,hyp}, --results_format {full_pdf,hyp},
--resultsformat {full_pdf,hyp}

Output results data format (extensible) [default=full_pdf]

--no-dist, --no_dist, --nodist

Do not output station distribution if running location samples

--dc-prior DC_PRIOR, --dc_prior DC_PRIOR, --dcprior DC_PRIOR

Prior probability for the double-couple model when using the Trans-Dimensional McMC algorithm

--sampling SAMPLING, --sampling SAMPLING, --sampling SAMPLING

Random moment tensor sampling distribution

--sample-models SAMPLE_DISTRIBUTION,
--sample_distribution SAMPLE_DISTRIBUTION, --samplemodels SAMPLE_DISTRIBUTION

Alternate models for random sampling (Monte Carlo algorithms only)

--sampling-prior SAMPLING_PRIOR, --sampling_prior SAMPLING_PRIOR,
--samplingprior SAMPLING_PRIOR

Prior probability for the model distribution when using the McMC algorithm, alternatively the prior distribution for
the source type parameters gamma and delta for use by the Bayesian evidence calculation for the MC algorithms

--no-normalise, --no-norm, --no_normalise, --no_norm

Do not normalise the output pdf

--convert

Convert the output MTs to Tape parameters, hudson parameters and strike dip rakes.
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--discard DISCARD

Fraction of maxProbability * total samples to discard as negligeable.

--mpioutput, --mpi_output, --mpi-output

When the mpi flag -M is used outputs each processor individually rather than combining

--combine_mpi_output, --combine-mpi-output, --combinempioutput

Combine the mpi output from the mpioutput flag. The data path corresponds to the root path for the mpi output

--c_generate, --c-generate, --generate

Generate moment tensor samples in the probability evaluation

--relative_loop, --relative-loop, --relativeloop, --loop

Loop over independent non-zero samples randomly to construct joint rather than joint samples

10.3 Scatangle:

--bin-scatangle, --binscatangle, --bin_scatangle

Bin the scatangle file to reduce the number of samples [default=False]. –bin-size Sets the bin size parameter .

--bin-size BIN_SCATANGLE_SIZE, --binsize BIN_SCATANGLE_SIZE,
--bin_size BIN_SCATANGLE_SIZE

Sets the scatangle bin size parameter [default=1.0]
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CHAPTER 11

Plotting the Moment Tensor

MTfit has a plotting submodule that can be used to represent the source. There are several different plot types,
shown below, and MTplot can be used both from the command line, and from within the python interpreter.

This section describes how to use the plotting tools and shows the different plot types:

• Beachball

• Fault plane

• Riedesel-Jordan

• Radiation

• Lune

• Hudson

These are plotted using matplotlib35, using a class based system. The main plotting class is the MTplot class,
which stores the figure and handles the plotting, and each axes plotted is shown using a plot class from MTfit.
plot.plot_classes. The plotting methods are designed to enable easy plotting without much user input,
but also allow more complex plots to be made. The examples section shows two examples of using the plotting
submodule.

The source code is shown in source-plot_classes.

Warning: matplotlib does not plot 3d plots very well, as each object is converted to a 2d object and
plotted, and given a constant zorder for the whole plot. Consequently, the bi-axes plot (Chapman and Leaney,
2011) is not included as an option, and other 3D plots may not always work correctly.

11.1 Using MTplot from the command line

MTplot can be run from the command line. A script should have been installed onto the path during installation
and should be callable as:

$ MTplot

However it may be necessary to install the script manually. This is platform dependent.
35 http://matplotlib.org/
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11.1.1 Script Installation

Linux

Add this python script to a directory on the $PATH environmental variable:

#!/usr/bin/env python
import MTfit
MTfit.plot.__run__()

and make sure it is executable.

Windows

Add the linux script (above) to the path or if using powershell edit the powershell profile (usually found in Doc-
uments/WindowsPowerShell/ - if not present use $PROFILE|Format-List -Force to locate it, it may be
necessary to create the profile) and add:

function MTplot{
$script={

python -c "import MTfit;MTfit.plot.__run__()" $args
}

Invoke-Command -ScriptBlock $script -ArgumentList $args
}

Windows Powershell does seem to have some errors with commandline arguments, if necessary these should be
enclosed in quotation marks e.g. "-d=datafile.inv"

11.1.2 Command Line Options

There are several command line options available, these can be found by calling:

$ MTplot -h

The command line defaults can be set using the same defaults file as for MTfit (see Running MTfit).

11.2 Using MTplot from the Python interpreter

Although MTplot can be run from the command line, it is much more powerful to run it from within the python
interpreter. To run MTplot from the python interpreter, create the MTplot object:

>>> from MTfit.plot import MTplot
>>> MTplot(MTs,plot_type='beachball',stations={},plot=True,*args,**kwargs)

See Making the MTplot class for more information on the MTplot object.

11.3 Input Data

MTfit.plot.__core__.read() can read the three default output formats (MATLAB, hyp and pickle) for
MTfit results.

Additional parsers can be installed using the MTfit.plot_read entry point described in Extending MTfit.
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11.4 MTplot Class

The MTplot class is used to handle plotting the moment tensors. The moment tensors are stored as an MTData
class.

class MTfit.plot.plot_classes.MTplot(MTs, plot_type=’beachball’, stations={},
plot=True, label=False, save_file=”,
save_dpi=200, *args, **kwargs)

MTplot class - handles plotting of the moment tensor using different plot_classes

This object acts as a handle round a matplotlib figure, handling the moment tensors and creating the plot
classes for axes.

Initialises the MTplot object.

Multiple plots (subplots) are handled using the matplotlib GridSpec - to create multiple plots, use nested
lists for the MTs, with the inner lists corresponding to each column and the outer each row, e.g.:

[[x,y=1,1;x,y=2,1],[x,y=1,2;x,y=2,2]]

The total number of columns is given by the max number of points in the nested list. Lists with fewer points
will have the last plot stretched to cover the remaining columns. Setting None in the list will stretch the plot
to it’s left to cover the columns.

The args and kwargs, which are passed through to the plot_class object can also be nested in this way.
Additionally, if the parameters are equal to the number of columns, or number of rows, the same values
are used for each plot in the corresponding column or row. If the dimension of the multiplot is square, the
parameters are assumed to correspond to the rows.

Args MTs: Moment tensor samples for creating MTData object, such as a numpy array of MT 6 vectors
(see MTData initialisation for different types, and MTplot docstring for handling multiple plots

Keyword Args plot_type: str - plot type selection (Default is ’beachball’) stations: dict - Dictionary of
stations, containing keys: ’names’,’azimuth’,’takeoff_angle’ and ’polarity’ or an empty dict (default)
plot: bool - flag to actually plot and show the figure label: bool - flag to show axis labels if multiple
plots are being shown save_file: string - filename to save plot to (if set) save_dpi: int - output dpi
for file save args: passed through to plot_class initialisation kwargs: passed through to plot_class
initialisation

ax_labels(show=True)
Set or update axis label to axis corners.

plot(*args, **kwargs)
Plots the figure and shows it.

Calls the plot functions for each plot_class in the multiplot.

11.5 MTData Class

The MTData class is used for storing and converting the moment tensors for plotting.

class MTfit.plot.plot_classes.MTData(MTs, probability=[], c=False, **kwargs)
MTData object manages the moment tensors.

Additionally it enables conversion between different parameterisations and calculation of several statistics.

This is used by all of the plot classes for handling the moment tensor, and is transparent to converting and
accessing the moment tensors, as it behaves like a numpy array (e.g. indexing and properties like shape are
given for the moment tensor).

The MTData object also stores the probability, and is used for calculating the orientation mean.
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MTData initialisation

Parameters corresponding to the moment tensor samples can be set as kwargs. These parameters include:

T, N, P, E, u, v, tau, k, gamma, delta, kappa, h, sigma, strike1, dip1, rake1, strike2, dip2, rake2,
N1, N2

Args

MTs: numpy array of moment tensor six vectors with shape (6,n). Alternatively, the input can be
a dictionary from the MTfit output.

Keyword Args

probability: list or numpy array of probabilities - should be the same length as the number of mo-
ment tensors, or empty (Default is [])

**kwargs: Attributes that correspond to converted parameters of the moment tensor, as de-
scribed above

cluster_normals()
Cluster the normals.

This is a very simplistic algorithm that clusters the normals by dividing them into two groups with the
shortest distance between them.

N.B. This depends on the initial values given, so if the normals are not well clustered, or the initial
normals chosen are outliers, the results will not be a good clustering.

Consequently, only use this approach for well clustered fault plane normals (in at least one normal
direction). The more tightly clustered normals are set to clustered_N1.

Returns numpy array, numpy array, numpy array, numpy array: tuple of numpy arrays, clustered_N1,
clustered_N2, clustered_rake1,clustered_rake2

get_max_probability(single=False)
Returns an MTData object containing the maximum probability solutions

Keyword Args single: bool - flag to return only one moment tensor (the first maximum probability
moment tensor)

Returns New MTData object with max probability MT samples.

Return type MTData

get_mean()
Calculates the mean moment tensor and variance of the moment tensor samples

Returns tuple of numpy arrays for the mean moment tensor six vector and the moment
tensor six vector covariance.

Return type numpy array,numpy array

get_mean_orientation()
Get the mean orientation from the clustered normals and rake parameters using the more tightly clus-
tered parameters.

This also calculates the variance of the rake distributions and covariance of the clustered normals
(using the probability if it is set)

Returns numpy array, numpy array, numpy array: tuple of the mean strike dip and rake of the fault
planes.

get_unique_McMC()
Gets the unique McMC samples, with the probability scaled by the number of samples

Returns MTData: New MTData object with unique MT samples and probabilities corresponding to
the moment tensor frequencies.
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is_dc()
Returns array of DC values

11.6 Beachball plot

The simplest plot is a beachball plot using the MTfit.plot.plot_classes._AmplitudePlot class.

Using the MTplot function, it can be made with the following commands:

>>> import MTfit
>>> import numpy as np
>>> MTfit.plot.MTplot(np.array([[1],[0],[-1],[0],[0],[0]]),'beachball',

fault_plane=True)

This plots the equal area projection of the source (a double-couple).

Stations can be included as a dictionary, with the azimuths and takeoff angles in degrees, such as:

>>> stations={'names':['S01','S02','S03','S04'],
'azimuth':np.array([120.,5.,250.,75.]),
'takeoff_angle':np.array([30.,60.,45.,10.]),
'polarity':np.array([1,0,1,-1])}

>>> MTfit.plot.MTplot(np.array([[1],[0],[-1],[0],[0],[0]]),'beachball',
stations=stations,fault_plane=True)

If the polarity probabilities have been used in the inversion, the probabilities can be plotted on the receivers,
by setting the stations polarity array as an array of the larger polarity probabilities, with negative polarity
probabilities corresponding to polarities in the negative direction, e.g.:

>>> stations={'names':['S01','S02','S03','S04'],
'azimuth':np.array([120.,5.,250.,75.]),
'takeoff_angle':np.array([30.,60.,45.,10.]),
'polarity':np.array([0.8,0.5,0.7,-0.9])}

>>> MTfit.plot.MTplot(np.array([[1],[0],[-1],[0],[0],[0]]),'beachball',
stations=stations,fault_plane=True)

To tweak the plot further, the plot class can be used directly:

>>> import MTfit
>>> import numpy as np
>>> X=MTfit.plot.plot_classes._AmplitudePlot(False,False,

np.array([[1],[0],[-1],[0],[0],[0]]),'beachball',
stations=stations,fault_plane=True)

>>> X.plot()

The first two arguments correspond to the subplot_spec and matplotlib figure to be used - if these are False, then
a new figure is created.

It uses the MTfit.plot.plot_classes._AmplitudePlot class:

class MTfit.plot.plot_classes._AmplitudePlot(subplot_spec, fig, MTs, stations={},
phase=’P’, *args, **kwargs)

Amplitude plotting (beachball)

parameter single is set to True, as can only plot one source per axis

Args subplot_spec: matplotlib subplot spec fig: matplotlib figure MTs: moment tensor samples (see MT-
Data initialisation docstring for formats)

Keyword Args phase: str - phase to plot (default=’p’) lower: bool - project lower hemisphere (ie.
downward hemisphere) full_sphere: bool - plot the full sphere fault_plane: bool - plot the
fault planes nodal_line: bool - plot the nodal lines stations: dict - station dict containing keys:
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’names’,’azimuth’,’takeoff_angle’ and ’polarity’ station_distribution: list - list of station dictionar-
ies corresponding to a location PDF distribution show_zero_polarity: bool - flag to show zero po-
larity receivers show_stations: bool - flag to show stations when station_distribution present sta-
tion_markersize: float - station marker size (squared to get area) station_colors: tuple - tuple of colors
for negative, no, and positive polarity TNP: bool - show the TNP axes on the plot colormap: str - mat-
plotlib colormap selection (using matplotlib.cm.get_cmap()) fontsize: int - fontsize for text linewidth:
float - base linewidth (sometimes thinner or thicker values are used, but relative to this parameter) text:
bool - flag to show or hide text on the plot axis_lines: bool - flag to show or hide axis lines on the plot
resolution: int - resolution for spherical sampling etc

plot(MTs=False, *args, **kwargs)
Plots the result

Keyword Args MTs: Moment tensors to plot (see MTData initialisation docstring for formats) args:
args passed to the _ax_plot function (e.g. set local parameters to be different from initialisation
values) kwargs: kwargs passed to the _ax_plot function (e.g. set local parameters to be different
from initialisation values)

11.7 Fault Plane plot

A similar plot to the amplitude beachball plot is the fault plane plot, made using the MTfit.plot.
plot_classes._FaultPlanePlot class.

Using the MTplot function, it can be made with the following commands:

>>> import MTfit
>>> import numpy as np
>>> MTfit.plot.MTplot(np.array([[1],[0],[-1],[0],[0],[0]]),'faultplane',

fault_plane=True)

This plots the equal area projection of the source (a double-couple).

Stations can be included as a dictionary, like with the beachball plot.

The fault plane plot also can plot the solutions for multiple moment tensors, so the input array can be longer:

>>> import MTfit
>>> import numpy as np
>>> MTfit.plot.MTplot(np.array([[ 1,0.9, 1.1,0.4],

[ 0,0.1,-0.1,0.6],
[-1, -1, -1, -1],
[ 0, 0, 0, 0],
[ 0, 0, 0, 0],
[ 0, 0, 0, 0]]),

'faultplane',fault_plane=True)

There are additional initialisation arguments, such as show_max_likelihood and show_mean boolean flags,
which shows the maximum likelihood fault planes in the color given by the default color argument, and the mean
orientation in green.

Additionally, if the probability argument is set, the fault planes are coloured by the probability, with more likely
planes darker.

It uses the MTfit.plot.plot_classes._FaultPlanePlot class:

class MTfit.plot.plot_classes._FaultPlanePlot(subplot_spec, fig, MTs, stations={},
probability=[], phase=’p’, *args,
**kwargs)

Plots the fault plane distribution

parameter single is set to False as multiple sources can be plotted per axes
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Args subplot_spec: matplotlib subplot spec fig: matplotlib figure MTs: moment tensor samples (see MT-
Data initialisation docstring for formats)

Keyword Args probability: numpy array - moment tensor probabilities phase: str - phase to plot (de-
fault=’p’) lower: bool - project lower hemisphere (ie. downward hemisphere) full_sphere: bool
- plot the full sphere fault_plane: bool - plot the fault planes nodal_line: bool - plot the nodal
lines stations: dict - station dict containing keys: ’names’,’azimuth’,’takeoff_angle’ and ’polarity’
station_distribution: list - list of station dictionaries corresponding to a location PDF distribution
show_zero_polarity: bool - flag to show zero polarity receivers show_stations: bool - flag to show sta-
tions when station_distribution present station_markersize: float - station marker size (squared to get
area) station_colors: tuple - tuple of colors for negative, no, and positive polarity TNP: bool - show the
TNP axes on the plot colormap: str - matplotlib colormap selection (using matplotlib.cm.get_cmap())
fontsize: int - fontsize for text linewidth: float - base linewidth (sometimes thinner or thicker values
are used, but relative to this parameter) text: bool - flag to show or hide text on the plot axis_lines:
bool - flag to show or hide axis lines on the plot resolution: int - resolution for spherical sampling etc
show_max_likelihood: bool - show the maximum likelihood solution in the default color show_mean:
bool - show the mean orientation source in green (thicker plane is better constrained) color: set color
for maximum likelihood fault plane (show_max_likelihood)

plot(MTs=False, *args, **kwargs)
Plots the result

Keyword Args MTs: Moment tensors to plot (see MTData initialisation docstring for formats) args:
args passed to the _ax_plot function (e.g. set local parameters to be different from initialisation
values) kwargs: kwargs passed to the _ax_plot function (e.g. set local parameters to be different
from initialisation values)

11.8 Riedesel-Jordan plot

The Riedesel-Jordan plot is more complicated, and is described in Riedesel and Jordan (1989). It plots the source
type on the focal sphere, in a region described by the source eigenvectors.

Using the MTplot function, it can be made with the following commands:

>>> import MTfit
>>> import numpy as np
>>> MTfit.plot.MTplot(np.array([[1],[0],[-1],[0],[0],[0]]),'riedeseljordan')

This plots the equal area projection of the source (a double-couple).

Stations cannot be shown on this plot.

The Riedesel-Jordan plot cannot plot the solutions for multiple moment tensors, so the input array can only be one
moment tensor.

It uses the MTfit.plot.plot_classes._RiedeselJordanPlot class:

class MTfit.plot.plot_classes._RiedeselJordanPlot(subplot_spec, fig, MTs, *args,
**kwargs)

Plots the source as a Riedesel-Jordan type plot

Args subplot_spec: matplotlib subplot spec fig: matplotlib figure MTs: moment tensor samples (see MT-
Data initialisation docstring for formats)

Keyword Args phase: str - phase to plot (default=’p’) lower: bool - project lower hemisphere (ie.
downward hemisphere) full_sphere: bool - plot the full sphere fault_plane: bool - plot the fault
planes nodal_line: bool - plot the nodal lines show_stations: bool - flag to show stations when sta-
tion_distribution present station_markersize: float - sets the source type marker sizes (squared to get
area) station_colors: tuple - tuple of colors for negative, no, and positive polarity TNP: bool - show the
TNP axes on the plot colormap: str - matplotlib colormap selection (using matplotlib.cm.get_cmap())
color: str - matplotlib color for source region fontsize: int - fontsize for text linewidth: float - base
linewidth (sometimes thinner or thicker values are used, but relative to this parameter) text: bool - flag
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to show or hide text on the plot axis_lines: bool - flag to show or hide axis lines on the plot resolution:
int - resolution for spherical sampling etc

plot(MTs=False, *args, **kwargs)
Plots the result

Keyword Args MTs: Moment tensors to plot (see MTData initialisation docstring for formats) args:
args passed to the _ax_plot function (e.g. set local parameters to be different from initialisation
values) kwargs: kwargs passed to the _ax_plot function (e.g. set local parameters to be different
from initialisation values)

11.9 Radiation plot

The radiation plot shows the same pattern as the beachball plot, except the shape is scaled by the amplitude on the
focal sphere.

Using the MTplot function, it can be made with the following commands:

>>> import MTfit
>>> import numpy as np
>>> MTfit.plot.MTplot(np.array([[1],[0],[-1],[0],[0],[0]]),'radiation')

This plots the equal area projection of the source (a double-couple).

Stations cannot be shown on this plot.

The radiation plot cannot plot the solutions for multiple moment tensors, so the input array can only be one
moment tensor.

It uses the MTfit.plot.plot_classes._RadiationPlot class:

class MTfit.plot.plot_classes._RadiationPlot(subplot_spec, fig, MTs, stations={},
phase=’P’, *args, **kwargs)

Plot the radiation pattern

Args subplot_spec: matplotlib subplot spec fig: matplotlib figure MTs: moment tensor samples (see MT-
Data initialisation docstring for formats)

Keyword Args phase: str - phase to plot (default=’p’) lower: bool - project lower hemisphere (ie.
downward hemisphere) full_sphere: bool - plot the full sphere fault_plane: bool - plot the
fault planes nodal_line: bool - plot the nodal lines stations: dict - station dict containing keys:
’names’,’azimuth’,’takeoff_angle’ and ’polarity’ station_distribution: list - list of station dictionar-
ies corresponding to a location PDF distribution show_zero_polarity: bool - flag to show zero po-
larity receivers show_stations: bool - flag to show stations when station_distribution present sta-
tion_markersize: float - station marker size (squared to get area) station_colors: tuple - tuple of colors
for negative, no, and positive polarity TNP: bool - show the TNP axes on the plot colormap: str - mat-
plotlib colormap selection (using matplotlib.cm.get_cmap()) fontsize: int - fontsize for text linewidth:
float - base linewidth (sometimes thinner or thicker values are used, but relative to this parameter) text:
bool - flag to show or hide text on the plot axis_lines: bool - flag to show or hide axis lines on the plot
resolution: int - resolution for spherical sampling etc

plot(MTs=False, *args, **kwargs)
Plots the result

Keyword Args MTs: Moment tensors to plot (see MTData initialisation docstring for formats) args:
args passed to the _ax_plot function (e.g. set local parameters to be different from initialisation
values) kwargs: kwargs passed to the _ax_plot function (e.g. set local parameters to be different
from initialisation values)
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11.10 Hudson plot

The Hudson plot is a source type plot, described in Hudson et al. (1989). It plots the source type in a quadrilateral,
depending on the chosen projection. There are two projections, the tau-k plot and the u-v plot, with the latter being
more common (and the default).

Using the MTplot function, it can be made with the following commands:

>>> import MTfit
>>> import numpy as np
>>> MTfit.plot.MTplot(np.array([[1],[0],[-1],[0],[0],[0]]),'hudson')

This plots the u-v plot of the source (a double-couple).

Stations cannot be shown on this plot.

The Hudson plot can plot the solutions for multiple moment tensors, so the input array can be longer. Additionally,
it can also plot a histogram of the PDF, if the probability argument is set.

It uses the MTfit.plot.plot_classes._HudsonPlot class:

class MTfit.plot.plot_classes._HudsonPlot(subplot_spec, fig, MTs, projection=’uv’,
probability=[], **kwargs)

Hudson plot class

Plots the source on the u-v or tau-k Hudson plot

Args subplot_spec: matplotlib subplot spec fig: matplotlib figure MTs: moment tensor samples (see MT-
Data initialisation docstring for formats)

Keyword Args projection: str - select the projection type from uv or tauk [default is uv] probability:
numpy array - moment tensor probabilities colormap: str - matplotlib colormap selection (using mat-
plotlib.cm.get_cmap()) fontsize: int - fontsize for text linewidth: float - base linewidth (sometimes
thinner or thicker values are used, but relative to this parameter) text: bool - flag to show or hide text
on the plot axis_lines: bool - flag to show or hide axis lines on the plot resolution: int - resolution for
spherical sampling etc grid_lines: bool - show the interior grid lines marginalised: bool - marginalise
the PDF (defailt is True) color: set marker color type_label: bool - show the label of the different types
hex_bin: bool - use the hex-bin histogram type (slightly smoother) bins: int/array/list of arrays - bins
for numpy histogram call

plot(MTs=False, *args, **kwargs)
Plots the result

Keyword Args MTs: Moment tensors to plot (see MTData initialisation docstring for formats) args:
args passed to the _ax_plot function (e.g. set local parameters to be different from initialisation
values) kwargs: kwargs passed to the _ax_plot function (e.g. set local parameters to be different
from initialisation values)

11.11 Lune plot

The Lune plot is a source type plot, described in Tape and Tape (2012). It plots the source type in the fundamental
eigenvalue lune, which can be projected into 2 dimensions.

Using the MTplot function, it can be made with the following commands:

>>> import MTfit
>>> import numpy as np
>>> MTfit.plot.MTplot(np.array([[1],[0],[-1],[0],[0],[0]]),'lune')

Stations cannot be shown on this plot.

The Lune plot can plot the solutions for multiple moment tensors, so the input array can be longer. Additionally,
it can also plot a histogram of the PDF, if the probability argument is set.
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It uses the MTfit.plot.plot_classes._LunePlot class:

class MTfit.plot.plot_classes._LunePlot(subplot_spec, fig, MTs, stations={},
phase=’P’, *args, **kwargs)

Plots the source on the fundamental eigenvalue lune

Can be either a histogram or scatter plot.

parameter single is set to False as multiple sources can be plotted per axes

Args subplot_spec: matplotlib subplot spec fig: matplotlib figure MTs: moment tensor samples (see MT-
Data initialisation docstring for formats)

Keyword Args phase: str - phase to plot (default=’p’) lower: bool - project lower hemisphere (ie.
downward hemisphere) full_sphere: bool - plot the full sphere fault_plane: bool - plot the
fault planes nodal_line: bool - plot the nodal lines stations: dict - station dict containing keys:
’names’,’azimuth’,’takeoff_angle’ and ’polarity’ station_distribution: list - list of station dictionar-
ies corresponding to a location PDF distribution show_zero_polarity: bool - flag to show zero po-
larity receivers show_stations: bool - flag to show stations when station_distribution present sta-
tion_markersize: float - station marker size (squared to get area) station_colors: tuple - tuple of colors
for negative, no, and positive polarity TNP: bool - show the TNP axes on the plot colormap: str - mat-
plotlib colormap selection (using matplotlib.cm.get_cmap()) fontsize: int - fontsize for text linewidth:
float - base linewidth (sometimes thinner or thicker values are used, but relative to this parameter) text:
bool - flag to show or hide text on the plot axis_lines: bool - flag to show or hide axis lines on the plot
resolution: int - resolution for spherical sampling etc

plot(MTs=False, *args, **kwargs)
Plots the result

Keyword Args MTs: Moment tensors to plot (see MTData initialisation docstring for formats) args:
args passed to the _ax_plot function (e.g. set local parameters to be different from initialisation
values) kwargs: kwargs passed to the _ax_plot function (e.g. set local parameters to be different
from initialisation values)

11.12 Examples

This section shows a pair of simple examples and their results.

The first example is to plot the data from Krafla P Polarity example:

import MTfit
import numpy as np
#Load Data
st_dist=MTfit.plot.read('krafla_event_ppolarityDCStationDistribution.mat',

station_distribution=True)
DCs,DCstations=MTfit.plot.read('krafla_event_ppolarityDC.mat')
MTs,MTstations=MTfit.plot.read('krafla_event_ppolarityMT.mat')
#Plot
plot=MTfit.plot.MTplot([np.array([1,0,-1,0,0,0]),DCs,MTs],

stations=[DCstations,DCstations,MTstations],
station_distribution=[st_dist,False,False],
plot_type=['faultplane','faultplane','hudson'],fault_plane=[False,True,False],
show_mean=False,show_max=True,grid_lines=True,TNP=False,text=[False,False,

→˓True])

This produces a matplotlib figure, shown in Fig. 11.1.

The second example shows the different plot types:

import MTfit
import numpy as np
import scipy.stats as sp

(continues on next page)
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Fig. 1: Beachball plots showing the station location uncertainty, and the fault plane orientations for the double-
couple constrained inversion and the marginalised source-type PDF for the faultplane moment tensor inversion
of the krafla data using polarity probabilities.

(continued from previous page)

#Generate Data
n=100
DCs=MTfit.MTconvert.Tape_MT6(np.zeros(n),np.zeros(n),np.pi+0.1*np.random.randn(n),

0.5+0.01*np.random.randn(n),0.1*np.random.randn(n))
probDCs=np.random.rand(n)
n=10000
g=-np.pi/12+0.01*np.random.randn(n)
d=np.pi/3+0.1*np.random.randn(n)
MTs=MTfit.MTconvert.Tape_MT6(g,d,np.pi+0.1*np.random.randn(n),

0.5+0.01*np.random.randn(n),0.1*np.random.randn(n))
probMTs=sp.norm.pdf(g,-np.pi/12,0.01)*sp.norm.pdf(d,np.pi/3,0.1)
plot_sources=[np.array([1,0,1,-1,0,0]),DCs,MTs,MTs,np.array([1,0,1,-1,0,0])]
#Plot
plot=MTfit.plot.MTplot(plot_sources,

plot_type=['beachball','faultplane','hudson','lune','riedeseljordan'],
probability=[False,probDCs,probMTs,probMTs,False],
colormap=['bwr','bwr','viridis','viridis','bwr'],
stations=[{'names':['S01','S02','S03','S04'],

'azimuth':np.array([120.,45.,238.,341.]),
'takeoff_angle':np.array([12.,56.,37.,78.]),
'polarity':[1,0,-1,-1]},{},{},{},{}],

show_mean=True,show_max=True,grid_lines=True,TNP=False,fontsize=6,
station_markersize=2,markersize=2)

This produces a matplotlib figure, shown in Fig. 11.2.

Fig. 2: MTplot examples showing an equal area projection of a beachball for an example moment tensor source,
fault plane distribution showing the mean orientation in green, Hudson and lune type plots of a full moment tensor
PDF, and a Riedesel-Jordan type plot of an example moment tensor source.
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CHAPTER 12

MTplot command line options

Command line usage:

MTplot [-h] [-d DATAFILE] [-p PLOT_TYPE] [-c COLORMAP] [-f FONTSIZE]
[-l LINEWIDTH] [-t] [-r RESOLUTION] [-b BINS] [--fault_plane]
[-n] [--tnp] [--marker_size MARKERSIZE]
[--station_marker_size STATION_MARKERSIZE] [--showmaxlikelihood]
[--showmean] [--grid_lines] [--color COLOR] [--type_label]
[--hex_bin] [--projection PROJECTION] [--save SAVE_FILE]
[--save-dpi SAVE_DPI] [-q] [--version]
[data_file]

12.1 Positional Arguments:

data_file

Data file to use for plotting, optional but must be specified either as a positional argument or as an optional
argument (see -d below)

12.2 Optional Arguments:

-h, --help

show this help message and exit

-d DATAFILE, --datafile DATAFILE, --data_file DATAFILE
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MTplot can read the output data from MTfit

-p PLOT_TYPE, --plot_type PLOT_TYPE, --plottype PLOT_TYPE,
--plot-type PLOT_TYPE, --type PLOT_TYPE

Type of plot to make

-c COLORMAP, --colormap COLORMAP, --color_map COLORMAP, --color-map COLORMAP

Matplotlib colormap selection

-f FONTSIZE, --font_size FONTSIZE, --fontsize FONTSIZE, --font-size FONTSIZE

Fontsize

-l LINEWIDTH, --line_width LINEWIDTH, --linewidth LINEWIDTH,
--line-width LINEWIDTH

Linewidth

-t, --text, --show-text, --show_text, --showtext

Flag to show text or not

-r RESOLUTION, --resolution RESOLUTION

Resolution for the focal sphere plot types

-b BINS, --bins BINS Number of bins for the histogram plot types

--fault_plane, --faultplane, --fault-plane

Show the fault planes on a focal sphere type plot

-n, --nodal_line, --nodal-line, --nodalline

Show the nodal lines on a focal sphere type plot

--tnp, --tp, --pt

Show TNP axes on focal sphere plots
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--marker_size MARKERSIZE, --markersize MARKERSIZE, --marker-size MARKERSIZE

Set marker size

--station_marker_size STATION_MARKERSIZE,
--stationmarkersize STATION_MARKERSIZE,
--station-marker-size STATION_MARKERSIZE,
--station_markersize STATION_MARKERSIZE, --station-markersize STATION_MARKERSIZE

Set station marker size

--showmaxlikelihood, --show_max_likelihood, --show-max-likelihood

Show the maximum likelihood solution on a fault plane plot (shown in color set by –color).

--showmean, --show-mean, --show_mean

Show the mean orientaion on a fault plane plot (shown in green).

--grid_lines, --gridlines, --grid-lines

Show interior lines on Hudson and lune plots

--color COLOR

Set default color

--type_label, --typelabel, --type-label

Show source type labels on Hudson and lune plots.

--hex_bin, --hexbin, --hex-bin

Use hex bin for histogram plottings

--projection PROJECTION

Projection choice for focal sphere plots

--save SAVE_FILE, --save_file SAVE_FILE, --savefile SAVE_FILE,
--save-file SAVE_FILE

Set the filename to save to (if set the plot is saved to the file)
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--save-dpi SAVE_DPI, --savedpi SAVE_DPI, --save_dpi SAVE_DPI

Output file dpi

-q, --quiet, --hide Don't show the plot on screen

--version

show program’s version number and exit
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MTfit.inversion: Inversion object

The main MTfit inversion object is used to handle the forward model evaluation and process the results. The
object initialisation and forward functions are documented here, although there are additional (private and special)
functions that are documented in the source code.

class MTfit.inversion.Inversion(data={}, data_file=False, location_pdf_file_path=False,
algorithm=’iterate’, parallel=True, n=0, phy_mem=8,
dc=False, **kwargs)

Main Inversion object

Runs the MT inversion, follwing a parameterisation set on initialisation. Parameters can be set for the
algorithm to use in the kwargs.

Algorithm options are:

• Time - Monte Carlo random sampling - runs until time limit reached.

• Iterate - Monte Carlo random sampling - runs until sample limit reached.

• McMC - Markov chain Monte Carlo sampling.

• TransDMcMC - Markov chain Monte Carlo sampling.

These are discussed in more detail in the MTfit.algorithms documentation.

The inversion is run by calling the forward function (MTfit.inversion.Inversion.forward)

Data Format

The inversion expects a python dictionary of the data in the format:

>>data={'PPolarity':{'Measured':numpy.matrix([[-1],[-1]...]),
'Error':numpy.matrix([[0.01],[0.02],...]),
'Stations':{'Name':[Station1,Station2,...]

'Azimuth':numpy.matrix([[248.0],[122.3]...]),
'TakeOffAngle':numpy.matrix([[24.5],[2.8]...])

}
},

'PSHAmplitudeRatio':{...},
...
'UID':'Event1'
}
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The initial key arguments correspond to the data types that can be used in the inversion. The inversion uses
polarity observations and amplitude ratios, and can also use relative amplitudes. This means that the useable
data types are:

Polarity

• PPolarity

• SHPolarity

• SVPolarity

Polarity observations made manually or automatically. The corresponding data dictio-
nary for polarities needs the following keys:

• Measured: numpy matrix of polarity observations

• Error: numpy matrix of fractional uncertainty in the polarity observations.

• Stations: dictionary of station information with keys:

– Name: list of station names

– Azimuth: numpy matrix of azimuth values in degrees

– TakeOffAngle: numpy matrix of take off angle values in degrees - 0 down (NED
coordinate system).

As with all of these dictionaries, the indexes of the observations and errors must corre-
spond to the stations, i.e. data[’Measured’][0,0] -> from data[’Stations’][’Name’][0]
with error data[’Error’][0,:] etc.

If polarity probabilities are being used, the keys are:

• PPolarityProbability

• SHPolarityProbability

• SVPolarityProbability

With a similar structure to the Polarity data, except the measured matrix has an ad-
ditional dimension, i.e. data[’Measured’][0,0] is the positive polarity probability and
data[’Measured’][0,1] is the negative polarity probability.

Amplitude ratios

• P/SHRMSAmplitudeRatio

• P/SVRMSAmplitudeRatio

• SH/SVRMSAmplitudeRatio

• P/SHQRMSAmplitudeRatio

• P/SVQRMSAmplitudeRatio

• SH/SVQRMSAmplitudeRatio

• P/SHAmplitudeRatio

• P/SVAmplitudeRatio

• SH/SVAmplitudeRatio

• P/SHQAmplitudeRatio

• P/SVQAmplitudeRatio

• SH/SVQAmplitudeRatio

Amplitude ratio observations made manually or automatically. The Q is not neces-
sary but is useful to label the amplitudes with a Q correction. The corresponding data
dictionary for amplitude ratios needs the following keys:

90 Chapter 13. MTfit.inversion: Inversion object



MTfit: A Bayesian Method for Source Inversion, Release 1.0.5

• Measured: numpy matrix of corrected numerator and denominator amplitude ratio
observations, needs to have two columns, one for the numerator and one for the
denominator.

• Error: numpy matrix of uncertainty (standard deviation) in the amplitude ratio
observations, needs to have two columns, one for the numerator and one for the
denominator.

• Stations: dictionary of station information with keys:

– Name: list of station names

– Azimuth: numpy matrix of azimuth values in degrees

– TakeOffAngle: numpy matrix of take off angle values in degrees - 0 down (NED
coordinate system).

As with all of these dictionaries, the indexes of the observations and errors must corre-
spond to the stations, i.e. data[’Measured’][0,0] -> from data[’Stations’][’Name’][0]
with error data[’Error’][0,:] etc.

Relative Amplitude Ratios

• PAmplitude

• SHAmplitude

• SVAmplitude

• PQAmplitude

• SHQAmplitude

• SVQAmplitude

• PRMSAmplitude

• SHRMSAmplitude

• SVRMSAmplitude

• PQRMSAmplitude

• SHQRMSAmplitude

• SVQRMSAmplitude

Relative Amplitude ratios use amplitude observations for different events made man-
ually or automatically. The Q is not necessary but is useful to label the amplitudes
with a Q correction. The corresponding data dictionary for amplitude ratios needs the
following keys:

• Measured: numpy matrix of amplitude observations for the event.

• Error: numpy matrix of uncertainty (standard deviation) in the amplitude observa-
tions.

• Stations: dictionary of station information with keys:

– Name: list of station names

– Azimuth: numpy matrix of azimuth values in degrees

– TakeOffAngle: numpy matrix of take off angle values in degrees - 0 down (NED
coordinate system).

As with all of these dictionaries, the indexes of the observations and errors must corre-
spond to the stations, i.e. data[’Measured’][0,0] -> from data[’Stations’][’Name’][0]
with error data[’Error’][0,:] etc.
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Angle Scatter Format The angle scatter files can be generated using a utility Scat2Angle based on the
NonLinLoc angle code. The angle scatter file is a text file with samples separated by blank lines. The
expected format is for samples from the location PDF that have been converted into take off and azimuth
angles (in degrees) for the stations, along with a probability value. It is important that the samples are
drawn from the location PDF as a Monte Carlo based integration approach is used for marginalising over
the uncertainty.

It is possible to use XYZ2Angle to samples drawn from a location PDF using the NonLinLoc angle ap-
proach.

Expected format is:

Probability
StationName Azimuth TakeOffAngle
StationName Azimuth TakeOffAngle

Probability
.
.
.

With TakeOffAngle as 0 down (NED coordinate system). e.g.:

504.7
S0271 231.1 154.7
S0649 42.9 109.7
S0484 21.2 145.4
S0263 256.4 122.7
S0142 197.4 137.6
S0244 229.7 148.1
S0415 75.6 122.8
S0065 187.5 126.1
S0362 85.3 128.2
S0450 307.5 137.7
S0534 355.8 138.2
S0641 14.7 120.2
S0155 123.5 117
S0162 231.8 127.5
S0650 45.9 108.2
S0195 193.8 147.3
S0517 53.7 124.2
S0004 218.4 109.8
S0588 12.9 128.6
S0377 325.5 165.3
S0618 29.4 120.5
S0347 278.9 149.5
S0529 326.1 131.7
S0083 223.7 118.2
S0595 42.6 117.8
S0236 253.6 118.6

502.7
S0271 233.1 152.7
S0649 45.9 101.7
S0484 25.2 141.4
S0263 258.4 120.7
.
.
.

Initialisation of inversion object

Parameters
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• data (dict/list) – Dictionary or list of dictionaries containing data for inversion.
Can be ignored if a data_file is passed as an argument (for data format, see below).

• data_file (str36) – Path or list of file paths containing (binary) pickled data dictio-
naries.

• location_pdf_file_path (str37) – Path or list of file paths to angle scatter files
(for file format, see above - other format extensions can be added using setuptools entry
points).

• algorithm (str38) – [’iterate’] algorithm selector

• parallel (bool39) – [True] Run the inversion in parallel using multiprocessing

• n (int40) – [0] Number of workers, default is to use as many as returned by multipro-
cessing.cpu_count

• phy_mem (int41) – [8] Estimated physical memory to use (used for determining array
sizes, it is likely that more memory will be used, and if so no errors are forced). On
python versions <2.7.4 there is a bug (http://bugs.python.org/issue13555) with pickle
that limits the total number of samples when running in parallel, so large (>20GB)
phy_mem allocations per process are ignored.

• dc (bool42) – [False] Boolean flag as to run inversion constrained to double-couple or
allowed to explore the full moment tensor space.

Keyword Arguments

• number_stations (int43) – [0] Used for estimating sample sizes in the Monte
Carlo random sampling algorithms (Time,Iterate) if set.

• number_location_samples (int44) – [0] Used for estimating sample sizes in
the Monte Carlo random sampling algorithms (Time,Iterate) if set.

• path (str45) – File path for output. Default is current working dir (interactive) or PBS
workdir.

• fid (str46) – File name root for output, default is to use MTfitOutput or the event
UID if set in the data dictionary.

• inversion_options (list47) – List of data types to be used in the iversion, if not
set, the inversion uses all the data types in the data dictionary, irrespective of indepen-
dence.

• diagnostic_output (bool48) – [False] Boolean flag to output diagnostic infor-
mation in MATLAB save file.

• marginalise_relative (bool49) – [False] Boolean flag to marginalise over lo-
cation/model uncertainty during relative amplitude inversion.

• mpi (bool50) – [False] Boolean flag to run using MPI from mpi4py (useful on cluster).

36 https://docs.python.org/3/library/stdtypes.html#str
37 https://docs.python.org/3/library/stdtypes.html#str
38 https://docs.python.org/3/library/stdtypes.html#str
39 https://docs.python.org/3/library/functions.html#bool
40 https://docs.python.org/3/library/functions.html#int
41 https://docs.python.org/3/library/functions.html#int
42 https://docs.python.org/3/library/functions.html#bool
43 https://docs.python.org/3/library/functions.html#int
44 https://docs.python.org/3/library/functions.html#int
45 https://docs.python.org/3/library/stdtypes.html#str
46 https://docs.python.org/3/library/stdtypes.html#str
47 https://docs.python.org/3/library/stdtypes.html#list
48 https://docs.python.org/3/library/functions.html#bool
49 https://docs.python.org/3/library/functions.html#bool
50 https://docs.python.org/3/library/functions.html#bool
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• multiple_events (bool51) – [False] Boolean flag to run all the events in the in-
version in one single joint inversion.

• relative_amplitude (bool52) – [False] Boolean flag to run multiple_events in-
cluding relative amplitude inversion.

• output_format (str53) – [’matlab’] str format style.

• minimum_number_intersections (int54) – [2] Integer minimum number of
station intersections between events in relative amplitude inversion.

• quality_check (bool55) – [False] Boolean flag/Float value for maximum non-zero
percentage check (stops inversion if event quality is poor)

• recover (bool56) – [False] Tries to recover pre-existing inversions, and does not
re-run if an output file exists and is readable.

• file_sample (bool57) – [False] Saves samples to a mat file (allowing for easier re-
covery and reduced memory requirements but can slow the inversion down as requires
disk writing every non-zero iteration. Only works well for recovery with random sam-
pling methods)

• results_format (str58) – [’full_pdf’] Data format for the output

• marginalise_relative – [False] Boolean flag to marginalise the location uncer-
tainty between absolute and relative data.

• file_sample – [False] save samples to file rather than keeping in memory (not nec-
essary in normal use).

• normalise (bool59) – [True] normalise output Probability (doesn’t affect ln_pdf
output).

• convert (bool60) – Convert output moment tensors to Tape parameters, Hudson u&v
coordinates and strike-dip-rake triples.

• discard (bool61) – [False] Probability cut-off for discarding samples Discarding
samples - samples less than 1/(discard*n_samples) of the maximum likelihood value
are discarded as negligeable. False means no samples are discarded.

• c_generate (bool62) – [False] Generate samples in the probability calculation when
using Cython.

• generate_cutoff (int63) – Set number of samples to cut-off at when using
c_generate (Default is the value of max_samples)

• relative_loop (bool64) – [False] Loop over non-zero samples when using relative
amplitudes.

• bin_angle_coefficient_samples (int65) – [0] Bin size in degrees when bin-
ning angle coefficients (All station angle differences must be within this range for sam-
ples to fall in the same bin)

51 https://docs.python.org/3/library/functions.html#bool
52 https://docs.python.org/3/library/functions.html#bool
53 https://docs.python.org/3/library/stdtypes.html#str
54 https://docs.python.org/3/library/functions.html#int
55 https://docs.python.org/3/library/functions.html#bool
56 https://docs.python.org/3/library/functions.html#bool
57 https://docs.python.org/3/library/functions.html#bool
58 https://docs.python.org/3/library/stdtypes.html#str
59 https://docs.python.org/3/library/functions.html#bool
60 https://docs.python.org/3/library/functions.html#bool
61 https://docs.python.org/3/library/functions.html#bool
62 https://docs.python.org/3/library/functions.html#bool
63 https://docs.python.org/3/library/functions.html#int
64 https://docs.python.org/3/library/functions.html#bool
65 https://docs.python.org/3/library/functions.html#int
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• no_station_distribution (bool66) – [True] Boolean flag to output station dis-
tribution or not.

• max_samples (int67) – [6000000] Max number of samples when using the iterate
algorithm.

• max_time (int68) – [600] Max time when using the time algorithm.

• verbosity (int69) – [0] Set verbosity level (0-4) high numbers mean more logging
output and verbosity==4 means the debugger will be called on errors.

• debug (bool70) – [False] Sets debug on or off (True means verbosity set to 4).

Other kwargs are passed to the algorithm - see MTfit.algorithms documentation for help on those.

forward()
Runs event forward model using the arguments when the Inversion object was initialised.

Depending on the algorithm selection uses either random sampling or Markov chain Monte Carlo
sampling - for more information on the different algorithms see MTfit.algorithms documentation.

66 https://docs.python.org/3/library/functions.html#bool
67 https://docs.python.org/3/library/functions.html#int
68 https://docs.python.org/3/library/functions.html#int
69 https://docs.python.org/3/library/functions.html#int
70 https://docs.python.org/3/library/functions.html#bool
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CHAPTER 14

Extending MTfit

MTfit has been written with the view that it is desirable to be able to easily extend the code. This is done using
entry points71 from the setuptools72 module.

The entry points are:

Entry Point Descriptions
MTfit.cmd_opts Command line options
MTfit.cmd_defaults Default parameters for the command line options
MTfit.tests Test functions for the extensions
MTfit.pre_inversion Function to be called with all kwargs before the inversion object is initialised
MTfit.post_inversion Function to be called with all available kwargs after the inversion has occurred
MTfit.extensions Functions that replaces the call to the inversion using all the kwargs
MTfit.parsers Functions that return the data dictionary from an input filename
MTfit.location_pdf_parsers Functions that return the location PDF samples from an input filename
MTfit.output_data_formats Functions that format the output data into a given type, often linked to the

output format
MTfit.output_formats Functions that output the results from the output_data_formats
MTfit.process_data_types Functions to convert input data into correct format for new data types in

forward model
MTfit.data_types Functions to evaluate the forward model for new data types
MTfit.parallel_algorithms Search algorithms that can be run (in parallel) like monte carlo random

sampling
MTfit.directed_algorithms Search algorithms that are dependent on the previous value (e.g. McMC)
MTfit.sampling Function that generates new moment tensor samples in the Monte Carlo

random sampling algorithm
MTfit.sampling_prior Function that calculates the prior either in the McMC algorithm or the MC

bayesian evidence estimate
MTfit.sample_distribution Function that generates random samples according to some source model
MTfit.plot Callable class for source plotting using matplotlib
MTfit.plot_read Function that reads the data from a file for the MTplot class
MTfit.documentation Installs the documentation for the extension
MTfit.source_code Installs the source code documentation for the extension

These entry points can be accessed by adding some arguments to the setuptools module setup.py script:
71 https://pythonhosted.org/setuptools/pkg_resources.html#entry-points
72 https://pythonhosted.org/setuptools
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kwargs['entry_points']={'entry_point_name': ['key = function']}

Where kwargs is the keyword dictionary passed to the setuptools setup() function, and the
entry_point_name is the desired entry point in the other package. The key is the description of the
function(), used for selecting it in the code (this should be described by the package), and the function()
is the desired function to be called when this key is selected.

The different usages for these entry points are described below.

extensions/scatangle.py is an example extension structure, although it would be necessary to make a
setup.py file to install it.

14.1 MTfit.cmd_opts

This entry point handles command line options for extensions that have been added. It is called when parsing the
command line options, and should not conflict with the options described in MTfit command line options.

The function is called as:

parser_group, parser_check = cmd_opts(parser_group, argparse=[True/False],
→˓defaults)

Where the parser_group is the argparse73 or optparse74 parser group depending on if argparse75 is
installed (Python version 2.7 or later), defaults are the command line defaults (with corresponding entry points
MTfit.cmd_defaults), and parser_check is the function called to check/process the parsers results.

An example cmd_opts function is:

def parser_check(parser,options,defaults):
flags=[]
if options['bin_scatangle']:

if not options['location_pdf_file_path']:
options['location_pdf_file_path']=glob.glob(options['data_file']+\

os.path.sep+'*'+options['angle_extension'])
if not type(options['location_pdf_file_path'])==list:
options['location_pdf_file_path']=[options['location_pdf_file_path']]

flags=['no_location_update']
return options,flags

def cmd_opts(group,argparse=ARGPARSE,defaults=PARSER_DEFAULTS):
if argparse:

group.add_argument("--bin-scatangle","--binscatangle","--bin_scatangle", \
action="store_true",default=defaults['bin_scatangle'], \
help="Bin the scatangle file to reduce the number of samples \

[default=False]. --bin-size Sets the bin size parameter .", \
dest="bin_scatangle")

group.add_argument("--bin-size","--binsize","--bin_size",type=float, \
default=defaults['bin_size'],help="Sets the scatangle bin size

→˓parameter \
[default="+str(defaults['bin_size'])+"].",dest="bin_scatangle_size

→˓")
else:

group.add_option("--bin-scatangle","--binscatangle","--bin_scatangle", \
action="store_true",default=defaults['bin_scatangle'],help="Bin the \

scatangle file to reduce the number of samples [default=False]. \
--bin-size Sets the bin size parameter .",dest="bin_scatangle")

group.add_option("--bin-size","--binsize","--bin_size",type=float, \

(continues on next page)

73 https://docs.python.org/3/library/argparse.html#module-argparse
74 https://docs.python.org/3/library/optparse.html#module-optparse
75 https://docs.python.org/3/library/argparse.html#module-argparse
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(continued from previous page)

default=defaults['bin_size'],help="Sets the scatangle bin size \
parameter [default="+str(defaults['bin_size'])+"].", \

dest="bin_scatangle_size")
return group,parser_check

This is taken from extensions/scatangle.py.

These command line options will be added to the options MTfit is called with so can then be parsed by other
functions in the extension.

The command line options for an extension can be installed using setuptools by adding the MTfit.
cmd_opts entry point to the extension setup.py script:

setup(...
entry_points = {'MTfit.cmd_opts': ['extension = mymodule:cmd_opts']}
...)

14.2 MTfit.cmd_defaults

This entry point handles the default values and types for the command line options described in MTfit.cmd_opts.
It is called when parsing the command line options.

The function is called as:

plugin_defaults, plugin_default_types = cmd_defaults()

Where both are dicts, and should contain defaults for the MTfit.cmd_opts, although they can also update the normal
MTfit command line options defaults and default types. Both dictionaries are used for updating the defaults from
the default file (see Installing MTfit).

An example cmd_defaults function is:

PARSER_DEFAULTS={
'bin_scatangle': False,
'bin_size': 1.0,
}

PARSER_DEFAULT_TYPES = {'bin_scatangle': [bool], 'bin_size': [float]}

def cmd_defaults():
return(PARSER_DEFAULTS, PARSER_DEFAULT_TYPES)

This is taken from extensions/scatangle.py.

The default command line options for an extension can be installed using setuptools by adding the MTfit.
cmd_defaults entry point to the extension setup.py script:

setup(...
entry_points = {'MTfit.cmd_defaults': ['extension = mymodule:cmd_defaults']}
...)

14.3 MTfit.tests

This entry point is used for any extensions to add tests to the test suite, which can be run using MTfit --test
on the command line, or as MTfit.run_tests() from within python.

The function is called as:
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test_suite = tests()

Where test_suite is the unittest.TestSuite76 containing the TestSuite, created as:

tests=[]
tests.append(unittest.TestLoader().loadTestsFromTestCase(__ExtensionTestCase))
test_suite=unittest.TestSuite(tests)

from each unittest.TestCase77.

A test suite for an extension can be installed using setuptools by adding the MTfit.tests entry point to
the extension setup.py script:

setup(...
entry_points = {'MTfit.tests': ['extension = mymodule:tests']}
...)

(N.B. the different test suites can be empty).

14.4 MTfit.pre_inversion

This entry point provides an opportunity to call a function before the MTfit.inversion.Inversion object
is created (e.g. for some additional data processing).

The plugin is called as:

kwargs = pre_inversion(**kwargs)

And can change the kwargs passed to the Inversion object to create it.

The function should just return the initial kwargs if the command line option to select it is not True, otherwise it
will always be called.

An pre_inversion function can be installed using setuptools by adding the MTfit.pre_inversion entry
point to the extension setup.py script:

setup(...
entry_points = {

'MTfit.pre_inversion': ['my_fancy_function = mymodule:main_function'],
'MTfit.cmd_opts': ['extension = mymodule:cmd_opts'],
'MTfit.cmd_defaults': ['extension = mymodule:cmd_defaults']}

...)

Where the MTfit.cmd_opts and MTfit.cmd_defaults entry points have been included.

14.5 MTfit.post_inversion

This entry point provides an opportunity to call a function after the MTfit.inversion.Inversion object
is created (e.g. for some additional data processing).

The plugin is called as:

post_inversion(**kwargs)

The function should just return nothing if the command line option to select it is not True, otherwise it will
always be called.

76 https://docs.python.org/3/library/unittest.html#unittest.TestSuite
77 https://docs.python.org/3/library/unittest.html#unittest.TestCase
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An post_inversion function can be installed using setuptools by adding the MTfit.post_inversion
entry point to the extension setup.py script:

setup(...
entry_points = {

'MTfit.post_inversion': ['my_fancy_function = mymodule:main_function'],
'MTfit.cmd_opts': ['extension = mymodule:cmd_opts'],
'MTfit.cmd_defaults': ['extension = mymodule:cmd_defaults']}

...)

Where the MTfit.cmd_opts and MTfit.cmd_defaults entry points have been included.

14.6 MTfit.extensions

This entry point allows functions that can replace the main call to the MTfit.inversion.Inversion object
and to the MTfit.inversion.Inversion.forward() function.

The plugin is called as:

result = ext(**kwargs)
if result != 1

return result

Where kwargs are all the command line options that have been set.

If the result of the extension is 1 the program will not exit (this should be the case if the kwargs option to call the
extension is not True), otherwise it exits.

N.B it is necessary for an extension to also have installed functions for the entry points:

• MTfit.cmd_opts,

• MTfit.cmd_defaults,

and the function should check if the appropriate option has been selected on the command line (if it doesn’t it will
always run).

An extension function can be installed using setuptools by adding the MTfit.extensions entry point to
the extension setup.py script:

setup(...
entry_points = {

'MTfit.extensions': ['my_fancy_function = mymodule:main_function'],
'MTfit.cmd_opts': ['extension = mymodule:cmd_opts'],
'MTfit.cmd_defaults': ['extension = mymodule:cmd_defaults']}

...)

Where the MTfit.cmd_opts and MTfit.cmd_defaults entry points have been included.

14.7 MTfit.parsers

The MTfit.parsers entry point allows additional input file parsers to be added. The CSV parser is added using this
in the setup.py script:

kwargs['entry_points'] = {'MTfit.parsers': ['.csv = MTfit.inversion:parse_csv']}

MTfit expects to call the plugin (if the data-file extension matches) as:

data = plugin(filename)
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A parser for a new file format can be installed using setuptools by adding the MTfit.parsers entry point
to the extension setup.py script:

setup(...
entry_points = {

'MTfit.parsers':
['.my_format = mymodule.all_parsers:my_format_parser_function']

}
...
)

The parser is called using:

data = my_new_format_parser_function(filename)

Where the filename is the data filename and data is the data dictionary (see Creating a Data Dictionary).

When a new parser is installed, the format (.my_new_format) will be called if it corresponds to the data-file
extension. However if the extension doesn’t match any of the parsers it will try all of them.

14.8 MTfit.location_pdf_parsers

This entry point allows additional location PDF file parsers to be added

MTfit expects to call the plugin (if the extension matches) as:

location_samples,location_probability=plugin(filename,number_station_samples)

Where number_station_samples is the number of samples to use (i.e subsampling if there are more samples in the
location PDF).

A parser for a new format can be installed using setuptools by adding the MTfit.
location_pdf_parsers entry point to the extension setup.py script:

setup(...
entry_points = {

'MTfit.location_pdf_parsers':
['.my_format = mymodule.all_parsers:my_format_parser_function']

}
...)

The parser is called using:

location_samples,location_probability=my_format_parser_function(filename,
number_location_samples)

Where the filename is the location PDF filename and number_location_samples is the number of
samples to use (i.e subsampling if there are more samples in the location PDF).

The expected format for the location_samples and location_probability return values are:

location_samples = [
{'Name': ['S01', 'S02', ...], 'Azimuth': np.matrix([[121.], [37.], ...]),

'TakeOffAngle': np.matrix([[88.], [12.], ...])},
{'Name': ['S01', 'S02', ...],'Azimuth': np.matrix([[120.], [36.], ...]),

'TakeOffAngle': np.matrix([[87.], [11.], ...])}
]

location_probability=[0.8,1.2, ...]

These are then used in a Monte Carlo method approach to include the location uncertainty in the inversion (see
Bayesian Approach).
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When a new parser is installed, the format (.my_new_format) will be called if it corresponds to the data-file
extension. However if the extension doesn’t match any of the parsers it will try all of them.

14.9 MTfit.output_data_formats

A parser for a new output data format can be installed using setuptools by adding the MTfit.
output_data_formats entry point to the extension setup.py script:

setup(...
entry_points = {

'MTfit.output_data_formats':
['my_format = mymodule.all_parsers:my_output_data_function']

}
...)

The parser is called using:

output_data = my_output_data_function(event_data, self.inversion_options,
output_data, location_samples, location_sample_multipliers,
self.multiple_events, self._diagnostic_output, *args, **kwargs)

Where the event_data is the dictionary of event data, self.inversion_options are the inversion options set using the -i command line argument (see MTfit command line options), the location_sample parameters are the PDF
samples described above, and the multiple_events and _diagnostic_output are corresponding
boolean flags.

The format is set using the --resultsformat command line argument (see MTfit command line options) or
the results_format function argument when initialising the Inversion object.

The resulting output_data is normally expected to be either a dictionary to be passed to the output_format
function to write to disk, or a pair of dictionaries (list). However it is passed straight through to the output file
format function so it is possible to have a custom output_data object that is then dealt with in the output file
formats function (see MTfit.output_formats). When a new parser is installed, the format (my_format) will be
added to the possible result formats on the command line (--resultsformat option in MTfit command line
options).

14.10 MTfit.output_formats

MTfit has an entry point for the function that outputs the results to a specific file format.

The function outputs the results from the output_data_formats function and returns a string to be printed to the
terminal and the output filename (it should change the extension as required) e.g.:

out_string,filename=output_formatter(out_data,filename,JobPool,*args,**kwargs)

JobPool is a MTfit.inversion.JobPool, which handles job tasking if the inversion is being run in par-
allel. It can be passed a task (callable object) to write to disk in parallel.

The format is set using the --format command line argument (see MTfit command line options) or the format
function argument when initialising the Inversion object.

A new format can be installed using setuptools by adding the MTfit.output_formats entry point to the
extension setup.py script:

setup(...
entry_points = {

'MTfit.output_formats':
['my_format = mymodule.all_parsers:my_output_format_function']

}
...)
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The parser is called using:

output_string, fname = my_output_format_function(output_data,
fname, pool, *args, **kwargs)

Where the fname is the output filename and output_data is the output data from the output data parser (see
:ref:entry_point-8‘). pool is the MTfit.inversion.JobPool.

When a new parser is installed, the format (my_format) will be added to the possible output formats on the
command line (--format option in MTfit command line options).

14.11 MTfit.process_data_types

A function to process the data from the input data to the correct format for an MTfit.data_types extension. This can
be installed can be installed using setuptools by adding the MTfit.process_data_types entry point
to the extension setup.py script:

setup(...
entry_points = {

'MTfit.process_data_types':
['my_data_type = mymodule.all_parsers:my_data_type_preparation']

}
...)

The function is called using:

extension_data_dict = extension_function(event)

where event is the data dictionary (keys correspond to different data types and the settings of the inversion_options
parameter). The function returns a dict, with the station coefficients having keys a_*** or aX_*** where X is a
single identifying digit. These station coefficients are a 3rd rank numpy array, with the middle index corresponding
to the location samples.

14.12 MTfit.data_types

A function to evaluate the forward model likelihood for a new data-type. This can be installed can be installed
using setuptools by adding the MTfit.data_types entry point to the extension setup.py script:

setup(...
entry_points = {

'MTfit.data_types':
['my_data_type = mymodule.all_parsers:my_data_type_likelihood']

}
...)

The inputs are prepared using an MTfit.process_data_types extension.

The function is called using:

ln_pdf = extension_function(self.mt, **self.ext_data[key])

where self.ext_data[key] is the data prepared by the MTfit.process_data_types function for this extension.
The mt variable is a numpy array of moment tensor six vectors in the form:

self.mt = np.array([[m11, ...],
[m22, ...],
[m33, ...],
[sqrt(2)*m12, ...],

(continues on next page)

104 Chapter 14. Extending MTfit



MTfit: A Bayesian Method for Source Inversion, Release 1.0.5

(continued from previous page)

[sqrt(2)*m13, ...],
[sqrt(2)*m23, ...]])

The station coefficients for the extension should be named as a_*** or aX_*** where X is a single identifying
digit, and be a 3rd rank numpy array, with the middle index corresponding to the location samples. The function
returns a MTfit.probability.LnPDF for the moment tensors provided. If the function does not exist, an
error is raised, and the result ignored.

The function should handle any c/cython calling internally.

Warning: It is assumed that the data used is independent, but this must be checked by the user.

Relative inversions can also be handled, but the extension name requires relative in it.

Relative functions are called using:

ln_pdf, scale, scale_uncertainty = extension_function(self.mt, ext_data_1, ext_
→˓data_2)

Where ext_data_* is the extension data for each event as a dictionary. This dictionary, generated using the
MTfit.process_data_types function for this extension, should also contain a list of the receivers with observations,
ordered in the same order as the numpy array of the data, as this is used for station indexing.

The scale and scale_uncertainty return variables correspond to estimates of the relative seismic moment
between the two events, if it is generated by the extension function (if this is not estimated, 1. and 0. should be
returned)

14.13 MTfit.parallel_algorithms

This extension provides an entry point for customising the search algorithm. This can be installed using
setuptools by adding the MTfit.parallel_algorithms entry point to the extension setup.py script:

setup(...
entry_points = {

'MTfit.parallel_algorithms':
['my_new_algorithm = mymodule:my_new_algorithm_class']

}
...)

The algorithm should inherit from MTfit.algorithms.monte_carlo_random.
_MonteCarloRandomSample, or have the functions initialise(), iterate(), __output__()
and attributes iteration, start_time, and pdf_sample as a MTfit.sampling.Sample or
MTfit.sampling.FileSample object.

The MTfit.parallel_algorithms entry point is for algorithms to replace the standard Monte Carlo
random sampling algorithm, which can be called and run in parallel to generate new samples - see MTfit.
inversion._random_sampling_forward().

The algorithm is initialised as:

algorithm = extension_algorithm(**kwargs)

where kwargs are the input arguments for the inversion object, and a few additional parameters such as the
number of samples (number_samples), which is the number of samples per iteration, accounting for memory.
Additional kwargs can be added using the MTfit.cmd_opts entry point.

The algorithm will be initialised, and expected to return the moment tensors to check in the forward model, and
end=True:
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mts, end = self.algorithm.initialise()

end is a boolean flag to determine whether the end of the search has been reached, and mts is the numpy array of
moment tensors in the form:

mts = np.array([[m11, ...],
[m22, ...],
[m33, ...],
[sqrt(2)*m12, ...],
[sqrt(2)*m13, ...],
[sqrt(2)*m23, ...]])

After initialisation, the results are returned from the MTfit.inversion.ForwardTask object as a dictionary
which should be parsed using the iterate() function:

mts, end = self.algorithm.iterate({'moment_tensors': mts, 'ln_pdf': ln_p_total, 'n
→˓': N})

The forward models can be run in parallel, either using multiprocessing78 or using MPI to pass the end flag.
Consequently, these algorithms have no ordering, so can not depend on previous samples - to add an algorithm
that is, it is necessary to use the MTfit.directed_algorithms entry point.

14.14 MTfit.directed_algorithms

This extension provides an entry point for customising the search algorithm. This can be installed can be installed
using setuptools by adding the MTfit.directed_algorithms entry point to the extension setup.py
script:

setup(...
entry_points = {

'MTfit.directed_algorithms':
['my_new_algorithm = mymodule:my_new_algorithm_class']

}
...)

The algorithm should inherit from MTfit.algorithms.__base__._BaseAlgorithm, or have the func-
tions initialise(), iterate(), __output__() and attribute pdf_sample as a MTfit.sampling.
Sample or MTfit.sampling.FileSample object.

The MTfit.directed_algorithms entry point is for algorithms to replace the Markov chain Monte
Carlo sampling algorithms - see MTfit.inversion._mcmc_sampling_forward(), using an MTfit.
inversion.MCMCForwardTask object

The algorithm is initialised as:

algorithm = extension_algorithm(**kwargs)

where kwargs are the input arguments for the inversion object, and a few additional parameters such as the
number of samples (number_samples), which is the number of samples per iteration, accounting for memory.
Additional kwargs can be added using the MTfit.cmd_opts entry point.

The algorithm will be initialised, and expected to return the moment tensors to check in the forward model, and
end=True:

mts, end = self.algorithm.initialise()

end is a boolean flag to determine whether the end of the search has been reached, and mts is the numpy array
of moment tensors in the form:

78 https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
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mts = np.array([[m11, ...],
[m22, ...],
[m33, ...],
[sqrt(2)*m12, ...],
[sqrt(2)*m13, ...],
[sqrt(2)*m23, ...]])

After initialisation, the results are returned from the MTfit.inversion.ForwardTask object as a dictionary
which should be parsed using the iterate function:

mts, end = self.algorithm.iterate({'moment_tensors': mts,'ln_pdf': ln_p_total, 'n
→˓': N})

The forward models are run in order, so can depend on previous samples - to add an algorithm that does not need
this, use the MTfit.parallel_algorithms entry point.

14.15 MTfit.sampling

This extension provides an entry point for customising the moment tensor sampling used by the search algorithm.
This can be installed can be installed using setuptools by adding the MTfit.sampling entry point to the
extension setup.py script:

setup(...
entry_points = {

'MTfit.sampling':
['my_extension_name = mymodule:my_source_sampling']

}
...)

The function should return a numpy array or matrix of normalised moment tensor six vectors in the form:

mts = np.array([[m11, ...],
[m22, ...],
[m33, ...],
[sqrt(2)*m12, ...],
[sqrt(2)*m13, ...],
[sqrt(2)*m23, ...]])

If an alternate sampling is desired for the McMC case (ie. a different model), it is necessary to extend the algorithm
class using the MTfit.directed_algorithms entry point.

14.16 MTfit.sampling_prior

This extension provides an entry point for customising the prior distribution of moment tensors used by the search
algorithm. This can be installed can be installed using setuptools by adding the MTfit.sampling_prior
entry point to the extension setup.py script:

setup(...
entry_points = {

'MTfit.sampling_prior':
['my_extension_name = mymodule:my_sampling_prior']

}
...)

Different functions should be chosen for the Monte Carlo algorithms compared to the Markov chain Monte Carlo
algorithms. In the Monte Carlo case, the prior is used to calculate the Bayesian evidence, and depends on the
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source type parameters. It must reflect the prior distribution on the source samples as a Monte Carlo type integra-
tion is used to calculate it, and should return a float from two input floats:

prior = prior_func(gamma, delta)

In the Markov chain Monte Carlo case, the function should return the prior of a sample, dependent on the selected
model, again as a float. It is called as:

prior = uniform_prior(xi, dc=None, basic_cdc=False, max_poisson=0, min_poisson=0)

where xi is a dictionary of the sample parameters e.g.:

xi = {'gamma': 0.1, 'delta': 0.3, 'kappa': pi/2, 'h': 0.5, 'sigma': 0}

If an alternate sampling is desired for the Markov chain Monte Carlo case (ie. a different model), it is necessary
to extend the algorithm class using the MTfit.directed_algorithms entry point.

14.17 MTfit.sample_distribution

This extension provides an entry point for customising the source sampling used by the Monte Carlo
search algorithm. This can be installed can be installed using setuptools by adding the MTfit.
sample_distribution entry point to the extension setup.py script:

setup(...
entry_points = {

'MTfit.sample_distribution':
['my_extension_name = mymodule:my_random_model_func']

}
...)

The model must generate a random sample according in the form of a numpy matrix or array:

mts = np.array([[m11, ...],
[m22, ...],
[m33, ...],
[sqrt(2)*m12, ...],
[sqrt(2)*m13, ...],
[sqrt(2)*m23, ...]])

If an alternate sampling is desired for the Markov chain Monte Carlo case (ie. a different model), it is necessary
to extend the algorithm class using the MTfit.directed_algorithms entry point.

14.18 MTfit.plot

This extension provides an entry point for customising the plot type the for MTfit.plot.MTplot object. This can be
installed can be installed using setuptools by adding the MTfit.plot entry point to the extension setup.
py script:

setup(...
entry_points = {

'MTfit.plot':
['plottype = mymodule:my_plot_class']

}
...)

The object should be a callable object which can accept the moment tensor 6-vector, matplotlib figure, matplotlib
grid_spec and other arguments (see the MTfit.plot.plot_classes._BasePlot class for an example),
with the __call__() function corresponding to plotting the moment tensor.
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The plottype name in the setup.py script should be lower case with no spaces, hypens or underscores (these are
removed in parsing the plottype).

14.19 MTfit.plot_read

This extension provides an entry point for customising the input file parser for reading data for the MT-
fit.plot.MTplot object. This can be installed can be installed using setuptools by adding the MTfit.
plot_read entry point to the extension setup.py script:

setup(...
entry_points = {

'MTfit.plot_read':
['.file_extension = mymodule:my_read_function']

}
...)

The function should accept an input filename and return a tuple of dicts for event and station data respectively

14.20 MTfit.documentation

This extension provides an entry point for customising the search algorithm. This can be installed can be installed
using setuptools by adding the MTfit.documentation entry point to the extension setup.py script:

setup(...
entry_points = {

'MTfit.documentation':
['my_extension_name = mymodule:my_rst_docs']

}
...)

The function should return a ReST string that can be written out when building the documentation using sphinx.

The name should be the extension name with _ replacing spaces. This will be capitalised into the link in the
documentation.

14.21 MTfit.source_code

This extension provides an entry point for customising the search algorithm. This can be installed can be installed
using setuptools by adding the MTfit.source_code entry point to the extension setup.py script:

setup(...
entry_points = {

'MTfit.source_code':
['my_extension_name = mymodule:my_rst_source_code_docs']

}
...)

The function should return a ReST string that can be written out when building the documentation using sphinx.

The name should be the extension name with _ replacing spaces. This will be capitalised into the link in the
documentation.
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